首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Temperature and osmotic stress dependence of the thermodynamics for binding linker histone H10, Its carboxyl domain (H10-C) or globular domain (H10-G) to B-DNA
Authors:VR Machha  CG Mikek  S Wellman  EA Lewis
Institution:1. Department of Chemistry, Mississippi State University, Mississippi, MS 39762, USA;2. Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA;3. Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA
Abstract:Linker histones (H1) are the basic proteins in higher eukaryotes that are responsible for the final condensation of chromatin. In contrast to the nucleosome core histone proteins, the role of H1 in compacting DNA is not clearly understood. In this study ITC was used to measure the binding constant, enthalpy change, and binding site size for the interactions of H10, or its C-terminal (H10-C) and globular (H10-G) domains to highly polymerized calf-thymus DNA at temperatures from 288 K to 308 K. Heat capacity changes, ΔCp, for these same H10 binding interactions were estimated from the temperature dependence of the enthalpy changes. The enthalpy changes for binding H10, H10-C, or H10-G to CT-DNA are all endothermic at 298 K, becoming more exothermic as the temperature is increased. The ΔH for binding H10-G to CT-DNA is exothermic at temperatures above approximately 300 K. Osmotic stress experiments indicate that the binding of H10 is accompanied by the release of approximately 35 water molecules.We estimate from our naked DNA titration results that the binding of the H10 to the nucleosome places the H10 protein in close contact with approximately 41 DNA bp. The breakdown is that the H10 carboxyl terminus interacts with 28 bp of linker DNA on one side of the nucleosome, the H10 globular domain binds directly to 7 bp of core DNA, and shields another 6 linker DNA bases, 3 bp on either side of the nucleosome where the linker DNA exits the nucleosome core.
Keywords:Histone  CT-DNA  Chromatin  Nucleosome  ITC  CD
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号