首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Wavelength Optimization for Quantitative Spectral Imaging of Breast Tumor Margins
Authors:Justin Y Lo  J Quincy Brown  Sulochana Dhar  Bing Yu  Gregory M Palmer  Nan M Jokerst  Nirmala Ramanujam
Institution:1. Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America.; 2. Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, United States of America.; 3. Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America.; National Cancer Center, Japan,
Abstract:A wavelength selection method that combines an inverse Monte Carlo model of reflectance and a genetic algorithm for global optimization was developed for the application of spectral imaging of breast tumor margins. The selection of wavelengths impacts system design in cost, size, and accuracy of tissue quantitation. The minimum number of wavelengths required for the accurate quantitation of tissue optical properties is 8, with diminishing gains for additional wavelengths. The resulting wavelength choices for the specific probe geometry used for the breast tumor margin spectral imaging application were tested in an independent pathology-confirmed ex vivo breast tissue data set and in tissue-mimicking phantoms. In breast tissue, the optical endpoints (hemoglobin, β-carotene, and scattering) that provide the contrast between normal and malignant tissue specimens are extracted with the optimized 8-wavelength set with <9% error compared to the full spectrum (450–600 nm). A multi-absorber liquid phantom study was also performed to show the improved extraction accuracy with optimization and without optimization. This technique for selecting wavelengths can be used for designing spectral imaging systems for other clinical applications.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号