首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Fluctuations at a Low Mean Temperature Accelerate Dengue Virus Transmission by Aedes aegypti
Authors:Lauren B Carrington  M Veronica Armijos  Louis Lambrechts  Thomas W Scott
Institution:1. Department of Entomology, University of California Davis, Davis, California, United States of America.; 2. Insects and Infectious Diseases, CNRS URA 3012, Institut Pasteur, Paris, France.; 3. Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America.; United States Army Medical Research Institute of Infectious Diseases, United States of America,
Abstract:

Background

Environmental factors such as temperature can alter mosquito vector competence for arboviruses. Results from recent studies indicate that daily fluctuations around an intermediate mean temperature (26°C) reduce vector competence of Aedes aeygpti for dengue viruses (DENV). Theoretical predictions suggest that the mean temperature in combination with the magnitude of the diurnal temperature range (DTR) mediate the direction of these effects.

Methodology/Principal Findings

We tested the effect of temperature fluctuations on Ae. aegypti vector competence for DENV serotype-1 at high and low mean temperatures, and confirmed this theoretical prediction. A small DTR had no effect on vector competence around a high (30°C) mean, but a large DTR at low temperature (20°C) increased the proportion of infected mosquitoes with a disseminated infection by 60% at 21 and 28 days post-exposure compared to a constant 20°C. This effect resulted from a marked shortening of DENV extrinsic incubation period (EIP) in its mosquito vector; i.e., a decrease from 29.6 to 18.9 days under the fluctuating vs. constant temperature treatment.

Conclusions

Our results indicate that Ae. aegypti exposed to large fluctuations at low temperatures have a significantly shorter virus EIP than under constant temperature conditions at the same mean, leading to a considerably greater potential for DENV transmission. These results emphasize the value of accounting for daily temperature variation in an effort to more accurately understand and predict the risk of mosquito-borne pathogen transmission, provide a mechanism for sustained DENV transmission in endemic areas during cooler times of the year, and indicate that DENV transmission could be more efficient in temperate regions than previously anticipated.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号