首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of Chronic Restraint Stress on Human Colorectal Carcinoma Growth in Mice
Authors:Qiang Lin  Feifei Wang  Rong Yang  Xinmin Zheng  Huibao Gao  Ping Zhang
Institution:1. Department of Biochemistry and Molecular Cell Biology, Institute of Medical Science, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China.; 2. Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America.; Harvard Medical School, United States of America,
Abstract:Stress alters immunological and neuroendocrinological functions. An increasing number of studies indicate that chronic stress can accelerate tumor growth, but its role in colorectal carcinoma (CRC) progression is not well understood. The aim of this study is to investigate the effects of chronic restraint stress (CRS) on CRC cell growth in nude mice and the possible underlying mechanisms. In this study, we showed that CRS increased the levels of plasma catecholamines including epinephrine (E) and norepinephrine (NE), and stimulated the growth of CRC cell-derived tumors in vivo. Treatment with the adrenoceptor (AR) antagonists phentolamine (PHE, α-AR antagonist) and propranolol (PRO, β-AR antagonist) significantly inhibited the CRS-enhanced CRC cell growth in nude mice. In addition, the stress hormones E and NE remarkably enhanced CRC cell proliferation and viability in culture, as well as tumor growth in vivo. These effects were antagonized by the AR antagonists PHE and PRO, indicating that the stress hormone-induced CRC cell proliferation is AR dependent. We also observed that the β-AR antagonists atenolol (ATE, β1- AR antagonist) and ICI 118,551 (ICI, β2- AR antagonist) inhibited tumor cell proliferation and decreased the stress hormone-induced phosphorylation of extracellular signal-regulated kinases-1/2 (ERK1/2) in vitro and in vivo. The ERK1/2 inhibitor U0126 also blocked the function of the stress hormone, suggesting the involvement of ERK1/2 in the tumor-promoting effect of CRS. We conclude that CRS promotes CRC xenograft tumor growth in nude mice by stimulating CRC cell proliferation through the AR signaling-dependent activation of ERK1/2.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号