首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The organization and connections of somatosensory cortex in the brush-tailed possum (Trichosurus vulpecula): evidence for multiple, topographically organized and interconnected representations in an Australian marsupial
Authors:Elston G N  Manger P R
Institution:Vision, Touch and Hearing Research Centre, Department of Physiology and Pharmacology, University of Queensland, Australia. G.Elston@vthrc.uq.edu.au
Abstract:Microelectrode mapping techniques were used to determine the organization of somatosensory cortex in the Australian brush-tailed possum (Trichosurus vulpecula). The results of electrophysiological mapping were combined with data on the cyto- and myeloarchitecture, and patterns of corticocortical connections, using sections cut tangential to the pial surface. We found evidence for three topographically organized representations of the body surface that were coextensive with architectonic subdivisions. A large, discontinuous cutaneous representation in anterior parietal cortex was termed the primary somatosensory area (SI). Lateral to SI we found evidence for two further areas, the second somatosensory area (SII) and the parietal ventral area (PV). While neurones in all of these areas were responsive to cutaneous stimulation, those of SI were non-habituating, whereas those in SII and PV often habituated to the stimuli. Moreover, neuronal receptive fields in SII and PV were, in general, larger than those in SI. Neurones in cortex adjacent to the rostral and caudal boundaries of SI, including cortex that interdigitated between the discontinuous SI head and body representations, required stimulation of deep receptors in the periphery to elicit responses. Within the region of cortex containing neurones responsive to stimulation of deep receptors, body parts were represented in a mediolateral progression. Injections of anatomical tracers placed in electrophysiologically identified locations in SI revealed ipsilateral connections with other parts of SI, as well as cortex rostral to, caudal to, and interdigitating between, SI. Injections in SI also resulted in labelling in PV, SII, motor cortex, posterior parietal cortex and perirhinal cortex. The patterns of contralateral projections reflected those of ipsilateral projections, although they were relatively less dense. The present findings support recent observations in other marsupials in which multiple representations of the body surface were described, and suggest that multiple interconnected sensory representations may be a common feature of cortical organization and function in marsupials.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号