首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinetics of adhesion mediated by extracellular loops of claudin-2 as revealed by single-molecule force spectroscopy
Authors:Lim Tong Seng  Vedula Sri Ram Krishna  Hunziker Walter  Lim Chwee Teck
Institution:1 Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
2 NUS Graduate School for Integrative Sciences and Engineering (NGS), Centre for Life Sciences (CeLS), #05-01, 28 Medical Drive, Singapore 117456
3 Division of Bioengineering and Department of Mechanical Engineering, 9 Engineering Drive 1, National University of Singapore, Singapore 117576
4 Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673
Abstract:Claudins (Cldns) comprise a large family of important transmembrane proteins that localize at tight junctions where they play a central role in regulating paracellular transportation of solutes across epithelia. However, molecular interactions occurring between the extracellular domains of these proteins are poorly understood. Here, using atomic force microscopy, the adhesion strength and kinetic properties of the homophilic interactions between the two extracellular loops of Cldn2 (C2E1or C2E2) and full-length Cldn2 were characterized at the level of single molecule. Results show that while the first extracellular loop is sufficient for Cldn2/Cldn2 trans-interaction, the second extracellular loop does not interact with the full-length Cldn2, with the first extracellular loop, or with itself. Furthermore, within the range of loading rates probed (102-104 pN/s), dissociation of Cldn2/Cldn2 and C2E1/C2E1 complexes follows a two-step energy barrier model. The difference in activation energy for the inner and outer barriers of Cldn2/Cldn2 and C2E1/C2E1 dissociation was found to be 0.26 and 1.66 kBT, respectively. Comparison of adhesion kinetics further revealed that Cldn2/Cldn2 dissociates at a much faster rate than C2E1/C2E1, indicating that the second extracellular loop probably has an antagonistic effect on the kinetic stability of Cldn2-mediated interactions. These results provide an insight into the importance of the first extracellular loop in trans-interaction of Cldn2-mediated adhesion.
Keywords:Cldn  claudin  TJ  tight junction  AFM  atomic force microscopy  MC  Monte Carlo
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号