首页 | 本学科首页   官方微博 | 高级检索  
     


Wall shear stress distribution in a model human aortic arch: assessment by an electrochemical technique
Authors:Z H Pei  B S Xi  N H Hwang
Abstract:Wall shear stress (WSS) distribution in a human aortic arch model is studied using 130 cathode electrodes flush-mounted on the model walls. Flow visualizations are made in a transparent geometry model to identify the regions of fluid mechanical interests, e.g. regions of flow separation, eddy formation and flow stagnancy. The 130 electrodes are strategically positioned in the arch based on information obtained from the flow visualizations. The measured data indicate that the aortic arch may be categorized into eight regions: three along the inner wall of the arch (A,B,C); and five near the outer wall (D,E,F,G,H). (1) The regions of low WSS are distributed along the inner wall of the ascending aorta A; the inner wall of the descending aorta C; and the upstream inner wall of the innominate and the common carotid branchings F. (2) The high WSS regions are distributed along the outer wall of the arch E; and the inner wall in the arch opposite to the left subclavian branching B. (3) In certain regions, high and low WSS may be found next to each other (e.g. G and H) without a definable boundary in between; and (4) as the Reynolds number increases, the areas of low WSS decrease, while the high WSS areas increase with no obvious change in magnitude of the stress along the inner wall of the arch. At the branchings, the WSS distribution is not affected by the Reynolds number within the range of observations. The measured WSS distribution is compared with Rodkiewicz's map of early atherosclerotic lesions in the aortic arch of cholesterol fed rabbits.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号