首页 | 本学科首页   官方微博 | 高级检索  
   检索      


omega-Hydroxylation of epoxy- and hydroxy-fatty acids by CYP94A1: possible involvement in plant defence
Authors:Pinot F  Skrabs M  Compagnon V  Salaün J P  Benveniste I  Schreiber L  Durst F
Institution:IBMP-CNRS UPR406 Dept. d'Enzymologie Cellulaire et Moléculaire, 28 rue Goethe 67083 Strasbourg, France. franck.pinot@bota-ulp.u-strasbg.fr
Abstract:The C(18) fatty acid derivatives 9,10-epoxystearic acid and 9,10-dihydroxystearic acid were hydroxylated on the terminal methyl by microsomes of yeast expressing CYP94A1 cloned from Vicia sativa. The reactions did not occur in incubations of microsomes from yeast transformed with a void plasmid or in the absence of NADPH. After incubation of a synthetic racemic mixture of 9,10-epoxystearic acid, the chirality of the residual epoxide was shifted to 66:34 in favour of the 9S,10R enantiomer. Both the 9S,10R and 9R,10S enantiomers were incubated separately. We determined respective K(m) and V(max) values of 1.2+/-0.1 microM and 19.2+/-0.3 nmol/min per nmol of cytochrome P450 for the 9R,10S enantiomer and of 5.9+/-0.1 microM and 20.2+/-1.0 nmol/min per nmol of cytochrome P450 for the 9S,10R enantiomer. This demonstrated that CYP94A1 is enantioselective for the 9R,10S, which is preferentially formed in V. sativa microsomes. Cutin analysis of V. sativa seedlings revealed that it is mainly constituted of derivatives of palmitic acid, a C(16) fatty acid. Our results suggest that CYP94A1 might play a minor role in cutin synthesis and could be involved in plant defence. Indeed, 18-hydroxy-9,10-epoxystearic acid and 9,10,18-trihydroxystearic acid have been described as potential messengers in plant-pathogen interactions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号