首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Acid-base and electrolyte regulation,and haemolymph gas transport in crayfish,Astacus astacus,exposed to soft,acid water with and without aluminium
Authors:Frank B Jensen  Hans Malte
Institution:(1) Institute of Biology, Odense University, DK-5230 Odense M, Denmark;(2) Present address: Department of Zoophysiology, Aarhus University, DK-8000 Aarhus C, Denmark
Abstract:Summary Intermoult crayfish (Astacus astacus) were exposed to acid (pH 4), soft water (Ca++]=100 mgrmol·l–1) in the absence and presence of aluminium (25 mgrmol·l–1) for variable time periods (up to 21 days) in order to assess the consequences for acid-base and electrolyte balance and haemolymph gas transport. Haemolymph osmolality and concentration of major ions decreased drastically and to a similar extent in acid and acid-aluminium water. Muscle tissue ion concentrations were, however, regulated at an almost constant level. A severe metabolic acidosis was gradually developed, attaining a haemolymph metabolic acid load of 6–7 mequiv·l–1 after 12–21 days. The acidosis was partially compensated by ventilatory means, with the postbranchial haemolymph PCO2 decreasing earlier in acidaluminium-exposed than in acid-exposed specimens. Hyperventilation seemed to be a direct acid-base regulatory response, since the rise in postbranchial PCO2 had only minimal influence on haemolymph O2 transport. The Bohr effect of Astacus astacus haemocyanin was low (deltalog P50/GdpH=-0.24), and the mean P50 only increased from 15 to 19 mmHg after 21 days of acid exposure. The decrease in O2 affinity with decreasing pH was accompanied by a decrease in the cooperativity of O2 binding. The haemolymph haemocyanin concentration was not affected by acid and acid-aluminium exposure, but decreased after 21 days due to starvation. Muscle tissue aluminium concentrations were unaffected, whereas gill tissue concentrations increased in acid-aluminium exposed crayfish, most likely due to accumulation of aluminium on the gill surface. Mortality was low, and an internal hypoxia and lactacidosis was not developed in either of the experimental groups. This suggests that the gas transfer qualities of the chitincovered gills of crayfish are much less sensitive to acid and acid-aluminium stress than the gills of teleost fish.Abbreviations Hc haemocyanin - SO2 saturation of Hc with O2 - P 50 oxygen tension of haemolymph at 50% SO2 - n 50 Hills coelficient around 50% SO2
Keywords:Acid-base regulation  Gas transport  Electrolyte regulation  Acid exposure  Aluminium  Crayfish Astacus
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号