首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Rapid evolution of a sexual reproduction gene in centric diatoms of the genus Thalassiosira
Authors:Armbrust E V  Galindo H M
Institution:Marine Molecular Biotechnology Laboratory, School of Oceanography, University of Washington, Seattle, Washington 98195, USA. armburst@ocean.washington.edu
Abstract:Sexual reproduction is commonly assumed to occur in the vast majority of diatoms due to the intimate association of this process with cell size control. Surprisingly, however, little is known about the impact of sexual events on diatom population dynamics. The Sig1 gene is strongly upregulated during sexual reproduction in the centric diatom Thalassiosira weissflogii and has been hypothesized to encode a protein involved in gamete recognition. In the present study, degenerate PCR primers were designed and used to amplify a portion of Sig1 from three closely related species in the cosmopolitan genus Thalassiosira, Thalassiosira oceanica, Thalassiosira guillardii, and Thalassiosira pseudonana. Identification of Sig1 in these three additional species facilitated development of this gene as a molecular marker for diatom sexual events. Examination of the new sequences indicated that multiple copies of Sig1 are probably present in the genome. Moreover, compared to the housekeeping gene beta-tubulin, the Sig1 genes of isolates of T. weissflogii collected from different regions of the Atlantic and Pacific oceans displayed high levels of divergence. The Sig1 genes of the four closely related Thalassiosira species also displayed high levels of sequence divergence compared to the levels observed with a second gene, Fcp, probably explaining why Sig1 could not be amplified from more distantly related species. The high levels of sequence divergence both within and between species suggest that Sig1 is rapidly evolving in a manner reminiscent of the manner observed in other genes that encode gamete recognition proteins. A simple model is presented for Sig1 evolution and the implications of such a rapidly evolving sexual reproduction gene for diatom speciation and population dynamics.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号