Cloning and characterization of an electrogenic Na/HCO3- cotransporter from the squid giant fiber lobe |
| |
Authors: | Piermarini Peter M Choi Inyeong Boron Walter F |
| |
Affiliation: | Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA. pmp26@cornell.edu |
| |
Abstract: | The squid giant axon is a classic model system for understanding both excitable membranes and ion transport. To date, a Na(+)-driven Cl-HCO(3)(-) exchanger, sqNDCBE--related to the SLC4 superfamily and cloned from giant fiber lobe cDNA--is the only HCO(3)(-)-transporting protein cloned and characterized from a squid. The goal of our study was to clone and characterize another SLC4-like cDNA. We used degenerate PCR to obtain a partial cDNA clone (squid fiber clone 3, SF3), which we extended in both the 5' and 3' directions to obtain the full-length open-reading frame. The predicted amino-acid sequence of SF3 is similar to sqNDCBE, and a phylogenetic analysis of the membrane domains indicates that SF3 clusters with electroneutral Na(+)-coupled SLC4 transporters. However, when we measure pH(i) and membrane potential--or use two-electrode voltage clamping to measure currents--on Xenopus oocytes expressing SF3, the oocytes exhibit the characteristics of an electrogenic Na/HCO(3)(-) cotransporter, NBCe. That is, exposure to extracellular CO(2)/HCO(3)(-) not only causes a fall in pH(i), followed by a robust recovery, but also causes a rapid hyperpolarization. The current-voltage relationship is also characteristic of an electrogenic NBC. The pH(i) recovery and current require HCO(3)(-) and Na(+), and are blocked by DIDS. Furthermore, neither K(+) nor Li(+) can fully replace Na(+) in supporting the pH(i) recovery. Extracellular Cl(-) is not necessary for the transporter to operate. Therefore, SF3 is an NBCe, representing the first NBCe characterized from an invertebrate. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|