首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Adsorption of biopolymers at hydrophilic cellulose-water interface
Authors:Halder Ebrahim  Chattoraj D K  Das K P
Institution:Department of Food Technology & Biochemical Engineering, Jadavpur University, Kolkata, 700 032, India.
Abstract:The extent of adsorption (Gamma2(1)) of bovine serum albumin (BSA), beta-lactoglobulin, lysozyme, gelatin, and DNA from aqueous solution onto the hydrophilic surface of cellulose has been measured as function of biopolymer concentration at different temperatures, pHs, and ionic strengths, and in the presence of a high concentration of inorganic salts and denaturants. In all cases, the value of Gamma2(1) increases with the increase of biopolymer concentration (X2) in bulk and it attains a maximum value at a critical mole fraction concentration X2m. The value of Gamma2m depends upon the nature of protein, temperature, pH, and ionic strength, as well as the nature of neutral salts present in excess. Gamma2m for proteins at a fixed physicochemical condition stands in the following order: Gelatin>betalactoglobulin>lysozyme>BSA. The isotherms for adsorption of DNA nucleotides on cellulose surface at pH 4.0 have been compared at different temperatures and ionic strengths, and in the presence of high concentration of inorganic salts LiCl, NaCl, KCl, and Na2SO4. Values of Gamma2m for different systems have been evaluated and critically compared. At pH 6.0 and 8.0, Gamma2(1) values of DNA nucleotides on cellulose are all negative due to the excess positive hydration of cellulose. At pH 4.0, adsorption of nucleotides of acid, alkali, and heat-denatured DNA widely differ from each other and in the presence of excess concentration of urea becomes negative. The probable mechanisms of biopolymer-cellulose adsorption in terms of polymer hydration, steric interaction, London-van der Waals, hydrophobic, and other types of interactions have been discussed qualitatively. The standard free energy change for the adsorption of protein and DNA nucleotides on the cellulose surface at the state of adsorption saturation has been calculated in kJ per kg of cellulose using an integrated form of the Gibbs adsorption equation. The relation between DeltaG degrees and maximum affinities between biopolymers and the polysaccharide interface have been discussed for various systems.
Keywords:biopolymer adsorption  adsorption of proteins and nucleic acids  adsorption on cellulose–water interface  free energy of interaction of cellulose with biopolymers
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号