首页 | 本学科首页   官方微博 | 高级检索  
     


The carboxyl terminal of the archaeal nuclease NurA is involved in the interaction with single-stranded DNA-binding protein and dimer formation
Authors:Tao Wei  Songtao Zhang  Linlin Hou  Jinfeng Ni  Duohong Sheng  Yulong Shen
Affiliation:(1) State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Road, Jinan, 250100, People’s Republic of China;(2) School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Road, Zhengzhou, 450002, People’s Republic of China;
Abstract:The nuclease NurA is present in all known thermophilic archaea and has been implicated to facilitate efficient DNA double-strand break end processing in Mre11/Rad50-mediated homologous recombinational repair. To understand the structural and functional relationship of this enzyme, we constructed five site-directed mutants of NurA from Sulfolobus tokodaii (StoNurA), D56A, E114A, D131A, Y291A, and H299A, at the conserved motifs, and four terminal deletion mutants, StoNurAΔN (19–331), StoNurAΔNΔC (19–303), StoNurAΔC (1–281), and StoNurAΔC (1–303), and characterized the proteins biochemically. We found that mutation at the acidic residue, D56, E114, D131, or at the basic residue, H299, abolishes the nuclease activity, while mutation at the aromatic residue Y291 only impairs the activity. Interestingly, by chemical cross-linking assay, we found that the mutant Y291A is unable to form stable dimer. Additionally, we demonstrated that deletion of the C-terminal amino acid residues 304–331 of StoNurA results in loss of the physical and functional interaction with the single-stranded DNA-binding protein (StoSSB). These results established that the C-terminal conserved aromatic residue Y291 is involved in dimer formation and the C-terminal residues 304–331 of NurA are involved in the interaction with single-stranded DNA-binding protein.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号