Ly9 (CD229)-deficient mice exhibit T cell defects yet do not share several phenotypic characteristics associated with SLAM- and SAP-deficient mice |
| |
Authors: | Graham Daniel B Bell Michael P McCausland Megan M Huntoon Catherine J van Deursen Jan Faubion William A Crotty Shane McKean David J |
| |
Affiliation: | Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA. |
| |
Abstract: | Signaling lymphocyte activation molecule (SLAM) family receptors are critically involved in modulating innate and adaptive immune responses. Several SLAM family receptors have been shown to interact with the adaptor molecule SAP; however, subsequent intracellular signaling is poorly defined. Notably, mutations in SLAM-associated protein (SAP) lead to X-linked lymphoproliferative disease, a rare but fatal immunodeficiency. Although the SLAM family member Ly9 (CD229) is known to interact with SAP, the functions of this receptor have remained elusive. Therefore, we have generated Ly9-/- mice and compared their phenotype with that of SLAM-/- and SAP-/- mice. We report that Ly9-/- T cells exhibit a mild Th2 defect associated with reduced IL-4 production after stimulation with anti-TCR and anti-CD28 in vitro. This defect is similar in magnitude to the previously reported Th2 defect in SLAM-/- mice but is more subtle than that observed in SAP-/- mice. In contrast to SLAM-/- and SAP-/- mice, T cells from Ly9-/- mice proliferate poorly and produce little IL-2 after suboptimal stimulation with anti-CD3 in vitro. We have also found that Ly9-/- macrophages exhibit no defects in cytokine production or bacterial killing as was observed in SLAM-/- macrophages. Additionally, Ly9-/- mice differ from SAP-/- mice in that they foster normal development of NKT cells and mount appropriate T and B cell responses to lymphocytic choriomeningitis virus. We have identified significant phenotypic differences between Ly-9-/- mice as compared with both SLAM-/- and SAP-/- mice. Although Ly9, SLAM, and SAP play a common role in promoting Th2 polarization, Ly-9 is uniquely involved in enhancing T cell activation. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|