首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biological nitrogen fixation in trees in agro-ecosystems
Authors:S K A Danso  G D Bowen  N Sanginga
Institution:(1) Joint FAO/IAEA Division, Wagramerstrasse 5, P. O. Box 100, 5-1400 Vienna, Austria;(2) Division of Soils, CSIRO, Glen Osmond 5064, Australia;(3) International Institute of Tropical Agriculture, PMB 5320, Ibadan, Nigeria
Abstract:The integration of trees, especially nitrogen fixing trees (NFTs), into agroforestry and silvo-pastoral systems can make a major contribution to sustainable agriculture by restoring and maintaining soil fertility, and in combating erosion and desertification as well as providing fuelwood. The particular advantage of NFTs is their biological nitrogen fixation (BNF), their ability to establish in nitrogen-deficient soils and the benefits of the nitrogen fixed (and extra organic matter) to succeeding or associated crops.The importance of NFTs leads to the question of how we can maximise or optimize their effects and how we can manage BNF and the transfer of nitrogen to associated or succeeding plantings. To be able to achieve these goals, suitable methods of measuring BNF in trees are necessary. The total nitrogen difference (TND) method is simple, but is better suited for low than high soil N conditions. The acetylene reduction assay (ARA), although sensitive and simple, has many technical limitations especially for NFTs, and the estimates of BNF have generally been very low, compared to other methods. For NFTs, the 15N techniques are still under development, but have already given some promising results (e.g., has been used to measure large genetic variability in BNF within different NFTs).Various factors affect BNF in trees. They include the age of trees, the microbial component, soil moisture, temperature, salinity, pH, soil N level and plant nutrient deficiencies. Some of the factors, e.g. temperature, affect the symbiosis more than plant growth, and differences in the effects of these factors on BNF in different NFT genotypes have been reported. These factors and research needs for improving BNF in trees are discussed.
Keywords:A-value  acetylene reduction assay  agroforestry  isotope dilution  15N  nitrogen fixation  nodules  trees  ureide technique
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号