首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Active site plasticity of endonuclease V from Salmonella typhimurium
Authors:Feng Hong  Klutz Athena M  Cao Weiguo
Institution:Department of Genetics, Biochemistry and Life Science Studies, South Carolina Experiment Station, Clemson University, Room 219, Biosystems Research Complex, 51 New Cherry Street, Clemson, South Carolina 29634, USA.
Abstract:Base deamination is a major type of DNA damage under nitrosative stress. Endonuclease V initiates repair of deaminated base damage by making a nucleolytic incision one nucleotide away from the 3' side of the lesion. Within the endonuclease V family, the substrate specificities are different from one enzyme to another. In this study, we investigated deamination lesion cleavage activities of endonuclease V from the macrophage-residing pathogen, Salmonella typhimurium. Salmonella endonuclease V exhibits limited turnover on cleavage of deoxyinosine- and xanthosine-containing DNA. Binding analysis indicates that this single-turnover property is caused by tight binding to nicked products. The nicking activity is similar between the double-stranded deoxyinosine- and deoxyxanthosine-containing DNA. Cleavage rates are not affected by bases opposite the deoxyinosine or deoxyxanthosine lesions. The enzyme is also active on single-stranded deoxyinosine- and deoxyxanthosine-containing DNA. Unlike endonuclease V from Thermotoga maritima, Salmonella endonucleae V can only turnover deoxyuridine-containing DNA to a limited extent when substrate is in excess. Binding analysis indicates that Salmonella endonuclease V achieves tight binding to deoxyuridine-containing DNA, a property that distinguishes it from Thermotoga endonuclease V. Cleavage analysis on mismatch-containing DNA also indicates that the active site of Salmonella endonuclease V can accommodate pyrimidine-containing mismatches, resulting in more comparable cleavage of pyrimidine- and purine-containing mismatches. This comprehensive DNA cleavage and binding analysis reveals the plastic nature in the active site of Salmonella endonuclease V, which allows the enzyme to enfold both purine and pyrimidine deaminated lesions or base pair mismatches.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号