首页 | 本学科首页   官方微博 | 高级检索  
     


Turgor Pressure Regulation in Valonia utricularis: Effect of Cell Wall Elasticity and Auxin
Authors:Zimmermann U  Steudle E  Lelkes P I
Affiliation:Institut für Biophysikalische Chemie (ICH/2) der Kernforschungsanlage Jülich, D-5170 Jülich, Postfach 1913, Germany.
Abstract:The electrical membrane resistance rho(0) of the marine alga Valonia utricularis shows a marked maximum in dependence on the turgor pressure. The critical pressure, P(c), at which the maximum occurs, as well as its absolute value, rho(0) (max), are strongly volume-dependent. Both P(c) and rho(0) (max), increase with decreasing cell volume. It seems likely, that these relationships reflect the elastic properties of the cell wall, because the volumetric elastic modulus, epsilon, is also volume-dependent, increasing hyperbolically with cell volume. Both P(c) and rho(0) (max) can be affected by external application of indole-3-acetic acid at concentrations of 2.10(-7)m to 2 .10(-5)m. The critical pressure is shifted by 1.2 to 6 bars toward higher pressures and the maximum membrane resistance increased up to 5.6-fold. During the course of the experiments (up to 4 hours), however, IAA had no effect on the volumetric elastic modulus, epsilon.The maximum in membrane resistance is discussed in terms of a pressure-dependent change of potassium fluxes. The volume dependence of P(c) and rho(0) (max) suggests that not only turgor pressure but also epsilon must be considered as a regulating parameter during turgor pressure regulation. On this basis a hypothesis is presented for the transformation of both, a pressure signal and of changes in the elastic properties of the cell wall into alterations of ion fluxes. It is assumed that the combined effects of tension and compression of the membranes as well as the interaction between membrane and cell wall opposingly change the number of transport sites for K(+) providing a turgor-sensing mechanism that regulates ion fluxes. The IAA effects demonstrated are consistent with this view, suggesting that the basic mechanisms for turgor pressure regulation and growth regulation are similar.Any relation connecting growth rate with turgor pressure should be governed by two parameters, i.e. by a yielding pressure, at which cell growth starts, and by the critical pressure, at which it ceases again.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号