首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of localized nitrate application on isoflavonoid concentration and nodulation in split-root systems of wild-type and nodulation-mutant soybean plants
Authors:Cho M J  Harper J E
Institution:Department of Agronomy, University of Illinois, 1102 South Goodwin Ave., Urbana, Illinois 61801.
Abstract:Although isoflavonoids are known to be inducers of nod genes in Bradyrhizobium japonicum, it was recently proposed that internal root levels of isoflavonoids may be important in nodule development on soybean (Glycine max L.] Merr.). The hypernodulating soybean mutants were shown to accumulate higher root concentrations of isoflavonoid compounds (daidzein, genistein, and coumestrol) and to be more extensively nodulated than was the Williams parent when inoculated with B. japonicum. The hypernodulating mutants and the parent line, Williams, also showed decreased isoflavonoid concentrations and decreased nodule development if N was applied. The current study evaluated the effect of localized NO(3) (-) application on root isoflavonoid concentration and on nodulation in split-root systems of the Williams wild type and a hypernodulating mutant (NOD1-3). Nitrate application markedly decreased isoflavonoid concentrations in non-inoculated soybean roots. When roots were inoculated, nodule number, weight, and nitrogenase activity were markedly suppressed on the root-half receiving 5 millimolar NO(3) (-) compared with the other root-half receiving 0 millimolar NO(3) (-). High performance liquid chromatographic analyses of root extracts showed that the root-half receiving 5 millimolar NO(3) (-) was markedly lower in isoflavonoid concentrations in both soybean lines. This was partially due to the localized stimulatory effect of NO(3) (-) on root growth. The inoculated NOD1-3 mutant had higher isoflavonoid concentrations than did the Williams control in both the presence and absence of NO(3) (-). These results provide evidence that the site of N application primarily controls the site of nodulation inhibition, possibly through decreasing isoflavonoid levels. Although the effect of NO(3) (-) on nodule development and root isoflavonoid concentration was strongly localized, there was evidence that NO(3) (-) also resulted in a systemic effect on root isoflavonoids. The results are consistent with previous speculation that internal levels of root isoflavonoids may affect nodule development.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号