首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Verteporfin is a substrate-selective γ-secretase inhibitor that binds the amyloid precursor protein transmembrane domain
Authors:Manuel A Castro  Kristine F Parson  Ilyas Beg  Mason C Wilkinson  Kamila Nurmakova  Iliana Levesque  Markus W Voehler  Michael S Wolfe  Brandon T Ruotolo  Charles R Sanders
Institution:1.Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA;2.Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA;3.Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA;4.Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, USA;5.Chemical and Physical Biology Program and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
Abstract:This work reports substrate-selective inhibition of a protease with broad substrate specificity based on direct binding of a small-molecule inhibitor to the substrate. The target for these studies was γ-secretase protease, which cleaves dozens of different single-span membrane protein substrates, including both the C99 domain of the human amyloid precursor protein and the Notch receptor. Substrate-specific inhibition of C99 cleavage is desirable to reduce production of the amyloid-β polypeptide without inhibiting Notch cleavage, a major source of toxicity associated with broad specificity γ-secretase inhibitors. In order to identify a C99-selective inhibitors of the human γ-secretase, we conducted an NMR-based screen of FDA-approved drugs against C99 in model membranes. From this screen, we identified the small-molecule verteporfin with these properties. We observed that verteporfin formed a direct 1:1 complex with C99, with a KD of 15–47 μM (depending on the membrane mimetic used), and that it did not bind the transmembrane domain of the Notch-1 receptor. Biochemical assays showed that direct binding of verteporfin to C99 inhibits γ-secretase cleavage of C99 with IC50 values in the range of 15–164 μM, while Notch-1 cleavage was inhibited only at higher concentrations, and likely via a mechanism that does not involve binding to Notch-1. This work documents a robust NMR-based approach to discovery of small-molecule binders to single-span membrane proteins and confirmed that it is possible to inhibit γ-secretase in a substrate-specific manner.
Keywords:amyloid precursor protein  γ  -secretase  screening  membrane  inhibitor
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号