首页 | 本学科首页   官方微博 | 高级检索  
   检索      


ENSO episodes modify plant/terrestrial-herbivore interactions in a southwestern Atlantic salt marsh
Authors:Alejandro D Canepuccia  Juan Alberti  Jesus Pascual  Just Cebrian  Oscar O Iribarne
Institution:
  • a Departamento de Biología (FCEyN), Universidad Nacional de Mar del Plata, CC 573 Correo Central. B7600WAG, Mar del Plata, Argentina
  • b Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, CP C1033AAJ, Ciudad de Buenos Aires, Argentina
  • c Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, AL 36528, USA
  • d Department of Marine Science, University of South Alabama, LSCB 25, 307 University Blvd, Mobile, AL 36688, USA
  • Abstract:Hemisphere scale events such as El Niño-Southern Oscillation (ENSO) can alter rainfall regimes worldwide, with important effects on species abundance and distribution. The evidence of ENSO effects on terrestrial communities is, however, restricted to a few ecosystem types. We explored the effects of ENSO episodes on plant/terrestrial-herbivore interactions through changes in the rainfall regime in a southwestern Atlantic salt marsh (Mar Chiquita coastal lagoon, Argentina. 37° 40′S, 57° 23′W). Surveys showed a positive relationship between winter rainfall and the abundance of the wild guinea pig Cavia aperea. The highest salt marsh abundances of C. aperea were associated with rainy periods during El Niño episodes, and the lowest ones were associated with the driest La Niña episodes. Rainfall was negatively associated with marsh sediment salinity, and experiments revealed that increased salinity reduces growth and increases mortality of cordgrass (Spartina densiflora). Salt increase also causes the highest percentage of dry area in S. densiflora leaves and reduced carbon content, and more salt content and secretion in S. densiflora stems. A factorial experiment in which we manipulated C. aperea presence and salinity along the edges of S. densiflora patches showed that plants can asexually invade unvegetated areas when salinity is reduced and C. aperea is excluded. Conversely, S. densiflora edges retracted when salinity was increased or there was C. aperea herbivory. Changes in nutritional quality of S. densiflora could explain the low herbivory of (and lack of impacts from) C. aperea in plots with high salinity. Thus, plant distribution responds directly to climate oscillations through changes in salt stress, and indirectly, through changes in plant-herbivore interactions. Herbivores respond indirectly to climate oscillations through changes in plant food quality, which suggests that top-down effects increase when bottom-up stressors are relaxed. ENSO events have direct and indirect effects on marsh communities that modulate the relative importance of top-down and bottom-up effects and have a considerable effect on the primary productivity of S. densiflora marshes.
    Keywords:Cascade of interactions  Cavia aperea  ENSO  Herbivory  Rainfall change  Spartina densiflora marsh
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号