首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Differential association of postsynaptic signaling protein complexes in striatum and hippocampus
Authors:Anthony J Baucum II  Abigail M Brown  Roger J Colbran
Institution:Department of Molecular Physiology and Biophysics, Vanderbilt Kennedy Center, and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, , Nashville, Tennessee, USA
Abstract:Distinct physiological stimuli are required for bidirectional synaptic plasticity in striatum and hippocampus, but differences in the underlying signaling mechanisms are poorly understood. We have begun to compare levels and interactions of key excitatory synaptic proteins in whole extracts and subcellular fractions isolated from micro‐dissected striatum and hippocampus. Levels of multiple glutamate receptor subunits, calcium/calmodulin‐dependent protein kinase II (CaMKII), a highly abundant serine/threonine kinase, and spinophilin, a F‐actin and protein phosphatase 1 (PP1) binding protein, were significantly lower in striatal extracts, as well as in synaptic and/or extrasynaptic fractions, compared with similar hippocampal extracts/fractions. However, CaMKII interactions with spinophilin were more robust in striatum compared with hippocampus, and this enhanced association was restricted to the extrasynaptic fraction. NMDAR GluN2B subunits associate with both spinophilin and CaMKII, but spinophilin‐GluN2B complexes were enriched in extrasynaptic fractions whereas CaMKII‐GluN2B complexes were enriched in synaptic fractions. Notably, the association of GluN2B with both CaMKII and spinophilin was more robust in striatal extrasynaptic fractions compared with hippocampal extrasynaptic fractions. Selective differences in the assembly of synaptic and extrasynaptic signaling complexes may contribute to differential physiological regulation of excitatory transmission in striatum and hippocampus.
Keywords:calcium/calmodulin‐dependent protein kinase II  hippocampus  protein complexes  protein phosphatase 1  spinophilin  striatum
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号