首页 | 本学科首页   官方微博 | 高级检索  
     


Involvement of lignocellulolytic enzymes in the decomposition of leaf litter in a subtropical forest
Authors:Hao Jie-Jie  Tian Xing-Jun  Song Fu-Qiang  He Xing-Bing  Zhang Zhi-Jun  Zhang Peng
Affiliation:School of Life Science, Nanjing University, Nanjing 210093, China.
Abstract:The involvement of ligninolytic and cellulolytic enzymes, such as laccase, lignin peroxidase, manganese peroxidase, carboxymethylcellulase (CMCase), and filter paper activity (FPA), in the decomposition process of leaf litter driven by 6 soil-inhabiting fungi imperfecti was studied under solid-state fermentations. All the tested fungi exhibited varied production profiles of lignocellulolytic enzymes and each caused different losses in total organic matter (TOM) during decomposition. Based on the results, the 6 fungi could be divided into 2 functional groups: Group 1 includes Alternaria sp., Penicillium sp., Acremonium sp., and Trichoderma sp., and Group 2 includes Pestalotiopsis sp. and Aspergillus fumigatus. Group 1, with higher CMCase and FPA activities, showed a higher decomposition rate than the fungi of Group 2 over the first 16 d, and thereafter the cellulolytic activities and decomposition rate slowed down. Group 2 showed the maximum and significantly higher CMCase and FPA activities than those of the Group 1 fungi during the later days. This, combined with the much higher laccase activity, produced a synergistic reaction that led to a much faster average mass loss rate. These results suggest that the fungi of Group 1 are efficient decomposers of cellulose and that the fungi of Group 2 are efficient decomposers of lignocellulose. During cultivation, Pestalotiopsis sp. produced an appreciable amount of laccase activity (0.56+/-0.09 U/ml) without the addition of inducers and caused a loss in TOM of 38.2%+/-3.0%, suggesting that it has high potential to be a new efficient laccase-producing fungus.
Keywords:Cellulolytic enzymes    decomposition    fungi imperfecti    laccase    leaf litters    peroxidases
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号