首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Coordination between Ca2+ release and subsequent re-uptake in the sarcoplasmic reticulum
Authors:Saiki Y  Ikemoto N
Institution:Boston Biomedical Research Institute, Boston, Massachusetts 02114, USA.
Abstract:We here report the results of our recent effort to produce, in the isolated sarcoplasmic reticulum (SR), a biphasic Ca2+ release and Ca2+ re-uptake transient and to resolve the kinetic relationship between Ca2+ release and re-uptake of the released Ca2+. Ca2+ release from the SR was induced by polylysine (the ryanodine receptor-specific Ca2+ release trigger) at various levels of calcium loading, or at various doses of the trigger. The changes in the Ca2+ concentration in the reaction solution and in the lumenal Ca2+ concentration were determined by stopped-flow spectroscopy using fluo-3 and mag-fura-2AM, respectively. At higher levels of calcium loading (>150 nmol/mg), polylysine induced monophasic Ca2+ release curves (without an appreciable re-uptake phase) as reported in most studies in the literature. However, lowering the calcium loading level to an intermediate range (100-150 nmol/mg) produced the desired biphasic transient curves consisting of Ca2+ release and Ca2+ re-uptake phases. Under these conditions, the increase in the polylysine concentration resulted in the increase of both the rate of Ca2+ release and that of re-uptake of the released Ca2+. The maximal rate of Ca2+ release and that of re-uptake showed a parallel relationship in the polylysine concentration range of 0-10 microM. This indicates that Ca2+ release from the SR and re-uptake of the released Ca2+ via the SR Ca2+ pump are well-coordinated processes. The changes in the lumenal Ca2+ concentration during the release and re-uptake reaction were monitored at an optimum level of calcium loading while clamping the extravesicular Ca2+ concentration at a constant value. There was again a tight correlation between Ca2+ release (decrease of the lumenal Ca2+ concentration) and re-uptake (increase of the lumenal Ca2+ concentration), indicating that acceleration of the re-uptake is controlled by the rate of decrease of the lumenal Ca2+ concentration. We propose that one of the mechanisms, by which the mode of coordination between the two components of the biphasic Ca2+ transient (viz. Ca2+ release via the ryanodine receptor and Ca2+ re-uptake via the SR Ca2+ pump) is controlled, is the change in the Ca2+ concentration gradient across the SR membrane.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号