首页 | 本学科首页   官方微博 | 高级检索  
     


Temperature dependence of force, velocity, and processivity of single kinesin molecules
Authors:Kawaguchi K  Ishiwata S
Affiliation:Department of Physics, Advanced Research Institute for Science and Engineering, Materials Research Laboratory for Bioscience and Photonics, Waseda University, Tokyo, Japan.
Abstract:Using the bead assay in optical microscopy equipped with optical tweezers, we have examined the effect of temperature on the gliding velocity, force, and processivity of single kinesin molecules interacting with a microtubule between 15 and 35 degrees C. The gliding velocity increased with the Arrhenius activation energy of 50 kJ/mol, consistent with the temperature dependence of the microtubule-dependent ATPase activity. Also, the average run length, i.e., a measure of processivity of kinesin, increased on increasing temperature. On the other hand, the generated force was independent of temperature, 7.34 +/- 0.33 pN (average +/- S.D., n = 70). The gliding velocities decreased almost linearly with an increase in force irrespective of temperature, implying that the efficiency of mechano-chemical energy conversion is maintained constant in this temperature range. Thus, we suggest that the force generation is attributable to the temperature-insensitive nucleotide-binding state(s) and/or conformational change(s) of kinesin-microtubule complex, whereas the gliding velocity is determined by the ATPase rate.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号