首页 | 本学科首页   官方微博 | 高级检索  
     


Role of the amino terminal domain in GroES oligomerization
Affiliation:1. Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Severo Ochoa Building (C6), Campus of Rabanales, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014 Córdoba, Spain;2. Department of Inorganic Chemistry and Chemical Engineering, Chemical Engineering Area, Marie Curie Building (C3), Campus of Rabanales, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014 Córdoba, Spain
Abstract:Digestions of the GroES oligomer with trypsin, chymotrypsin and Glu-C protease from Staphylococcus aureus V8 (V8) have helped to locate three regions in the GroES sequence that are sensitive to limited proteolysis and have provided information of the GroES domains involved in monomer-monomer and GroEL interaction. The removal of the first 20 or 27 amino acids of the N-terminal region of each GroES monomer by trypsin or chymotrypsin respectively, abolish the oligomerization of the GroES complex and its binding to GroEL. The V8-treatment of GroES promotes the breakage of the peptide bond between Glu18 and Thr19 but not the liberation of the N-terminal fragment from the GroES oligomer, which is capable of forming with GroEL a complex active in protein folding. It is deduced from these results that the N-terminal region of the GroES monomer is involved in monomer-monomer interaction, providing experimental evidence that relates some biochemical properties of GroES with its three-dimensional structure at atomic resolution.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号