首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Function of plastid mRNA 3' inverted repeats. RNA stabilization and gene-specific protein binding
Authors:D B Stern  H Jones  W Gruissem
Institution:Department of Plant Biology, University of California, Berkeley 94720.
Abstract:Plastid protein coding regions in plants are generally flanked by 3' inverted repeat (IR) sequences. In a previous work (Stern, D. B., and Gruissem, W. (1987) Cell 51, 1145-1157), we have shown that their role may be in RNA stabilization and as a processing signal that establishes the mature mRNA 3' end. In this report we have investigated the stability and protein interaction of chloroplast mRNA 3' IR-RNA sequences in more detail. Progressive deletions into the 3' IR-RNA sequences for the chloroplast cytochrome b6/f subunit IV (petD) mRNA reduce the stability of the RNA, indicating that the potential to form a stem/loop is a minimum requirement for petD 3' IR-RNA stability in vitro. Specific point mutants also destabilize the processed 3' IR-RNA, suggesting an important role for the primary sequence. Gel mobility shift and UV-cross-linking analysis has shown that 3' IR-RNAs of petD and two other chloroplast mRNAs (rbcL and psbA) interact with proteins in vitro. Comparison of the bound petD 3' IR-RNA proteins with proteins that bind to rbcL and psbA reveals that binding of certain proteins is gene-specific. Also, precursor and processed petD 3' IR-RNAs bind different sets of proteins. A single nucleotide transversion (T----A) near the base of the stem eliminates the binding of a 29-kDa protein to the petD 3' IR-RNA precursor. We discuss the possible role of 3' IR-RNA-protein interactions in plastid mRNA 3' end maturation and differential mRNA stability.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号