首页 | 本学科首页   官方微博 | 高级检索  
     


Long- and short-range signals control the dynamic expression of an animal hemisphere-specific gene in Xenopus
Authors:Mir Adnan  Kofron Matthew  Heasman Janet  Mogle Melissa  Lang Stephanie  Birsoy Bilge  Wylie Chris
Affiliation:a Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, 3333 Burnet Ave, Cincinnati, OH 45229, USA
b Physician/Scientist Training Program, P. O. Box 670555, Cincinnati, OH 45267, USA
Abstract:Little is known of the control of gene expression in the animal hemisphere of the Xenopus embryo. Here we show that expression of FoxI1e, a gene essential for normal ectoderm formation, is expressed regionally within the animal hemisphere, in a highly dynamic fashion. In situ hybridization shows that FoxI1e is expressed in a wave-like fashion that is initiated on the dorsal side of the animal hemisphere, extends across to the ventral side by the mid-gastrula stage, and is then turned off in the dorsal ectoderm, the neural plate, at the neurula stage. It is confined to the inner layers of cells in the animal cap, and is expressed in a mosaic fashion throughout. We show that this dynamic pattern of expression is controlled by both short- and long-range signals. Notch signaling controls both the mosaic, and dorsal/ventral changes in expression, and is controlled, in turn, by Vg1 signaling from the vegetal mass. FoxI1e expression is also regulated by nodal signaling downstream of VegT. Canonical Wnt signaling contributes only to late changes in the FoxI1e expression pattern.These results provide new insights into the roles of vegetally localized mRNAs in controlling zygotic genes expressed in the animal hemisphere by long-range signaling. They also provide novel insights into the role of Notch signaling at the earliest stages of vertebrate development.
Keywords:FoxI1e   Xenopus   Ectoderm   Animal gene expression
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号