Spin-label ESR studies on the interaction of bovine spinal cord myelin basic protein with dimyristoylphosphatidylglycerol dispersions |
| |
Authors: | M B Sankaram P J Brophy D Marsh |
| |
Affiliation: | Max-Planck-Institut für biophysikalische Chemie, Abteilung Spektroskopie, G?ttingen, Federal Republic of Germany. |
| |
Abstract: | Electron spin resonance (ESR) spectroscopy and chemical binding assays were used to study the interaction of bovine spinal cord myelin basic protein (MBP) with dimyristoylphosphatidylglycerol (DMPG) membranes. Increasing binding of MBP to DMPG bilayers resulted in an increasing motional restriction of PG spin-labeled at the C-5 atom position in the acyl chain, up to a maximum degree of association of 1 MBP molecule per 36 lipid molecules. ESR spectra of PG spin-labels labeled at other positions in the sn-2 chain showed a similar motional restriction, while still preserving the chain flexibility gradient characteristic of fluid lipid bilayers. In addition, labels at the C-12 and C-14 atom positions gave two-component spectra, suggesting a partial hydrophobic penetration of the MBP into the bilayer. Spectral subtractions were used to quantitate the membrane penetration in terms of the stoichiometry of the lipid-protein complexes. Approximately 50% of the spin-labeled lipid chains were directly affected at saturation protein binding. The salt and pH dependence of the ESR spectra and of the protein binding demonstrated that electrostatic interaction of the basic residues of the MBP with the PG headgroups is necessary for an effective association of the MBP with phospholipid bilayers. Binding of the protein, and concomitant perturbation of the lipid chain mobility, was reduced as the ionic strength increased, until at salt concentrations above 1 M NaCl the protein was no longer bound. The binding and ESR spectral perturbation also decreased as the protein charge was reduced by pH titration to above the pI of the protein at approximately pH 10.(ABSTRACT TRUNCATED AT 250 WORDS) |
| |
Keywords: | |
|
|