Topography of protein kinase C substrates analyzed by membrane splitting |
| |
Authors: | K A Fisher K C Yanagimoto |
| |
Affiliation: | Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0130. |
| |
Abstract: | We have used the methods of planar cell and membrane monolayer formation and monolayer splitting to study structural details of the transmembrane signaling process mediated by protein kinase C. We analyzed human red cell membrane proteins phosphorylated by phorbol ester activation of protein kinase C. Planar single membrane preparations, extraction procedures, and gel electrophoresis coupled with silver staining and autoradiography confirmed that two bands in the 100 kDa region, and bands 4.1, and 4.9, were peripheral and phosphorylated by treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA). TPA also stimulated minor incorporation of [32 P]Pi into most integral membrane proteins, including band 3, glycophorin A, the band 4.5 region (glucose transporter) and band 7. Planar cell and membrane-splitting methods revealed that neither integral nor peripheral phosphorylated polypeptides were cleaved by freeze fracture, that all phosphorylated peripheral proteins partitioned intact with the cytoplasmic side of the membrane, and that the percentages of [32P]Pi-labeled peripheral proteins were the same in split membrane cytoplasmic leaflets as in intact membranes. As a unique approach to examining protein topographies membrane splitting provides strong evidence that the major phosphorylated products of the polyphosphatidylinositide pathway are topographically associated with the cytoplasmic leaflet of the human erythrocyte plasma membrane. We further conclude that TPA-induced phosphorylation of red cell peripheral proteins does not significantly alter their transbilayer partitioning patterns after membrane splitting. |
| |
Keywords: | |
|
|