首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Quantitative Proteomics of the Neisseria Gonorrhoeae Cell Envelope and Membrane Vesicles for the Discovery of Potential Therapeutic Targets
Authors:Ryszard A Zielke  Igor H Wierzbicki  Jacob V Weber  Philip R Gafken  Aleksandra E Sikora
Institution:From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331; ;§Proteomics Facility, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024
Abstract:Neisseria gonorrhoeae (GC) is a human-specific pathogen, and the agent of a sexually transmitted disease, gonorrhea. There is a critical need for new approaches to study and treat GC infections because of the growing threat of multidrug-resistant isolates and the lack of a vaccine. Despite the implied role of the GC cell envelope and membrane vesicles in colonization and infection of human tissues and cell lines, comprehensive studies have not been undertaken to elucidate their constituents. Accordingly, in pursuit of novel molecular therapeutic targets, we have applied isobaric tagging for absolute quantification coupled with liquid chromatography and mass spectrometry for proteome quantitative analyses. Mining the proteome of cell envelopes and native membrane vesicles revealed 533 and 168 common proteins, respectively, in analyzed GC strains FA1090, F62, MS11, and 1291. A total of 22 differentially abundant proteins were discovered including previously unknown proteins. Among those proteins that displayed similar abundance in four GC strains, 34 were found in both cell envelopes and membrane vesicles fractions. Focusing on one of them, a homolog of an outer membrane protein LptD, we demonstrated that its depletion caused loss of GC viability. In addition, we selected for initial characterization six predicted outer membrane proteins with unknown function, which were identified as ubiquitous in the cell envelopes derived from examined GC isolates. These studies entitled a construction of deletion mutants and analyses of their resistance to different chemical probes. Loss of NGO1985, in particular, resulted in dramatically decreased GC viability upon treatment with detergents, polymyxin B, and chloramphenicol, suggesting that this protein functions in the maintenance of the cell envelope permeability barrier. Together, these findings underscore the concept that the cell envelope and membrane vesicles contain crucial, yet under-explored determinants of GC physiology, which may represent promising targets for designing new therapeutic interventions.Neisseria gonorrhoeae (GC)1 is an obligate human pathogen and the etiological agent of gonorrhea, a sexually transmitted disease. GC infection remains a significant health and economic burden worldwide (1). It is also the second most commonly reported infectious disease in the United States (2). Gonorrhea ranges from clinically asymptomatic to local genital infections to disseminated bloodstream infections. Asymptomatic infections often have devastating consequences on women''s health including pelvic inflammatory disease, ectopic pregnancy, and infertility (3). Additionally, GC infections facilitate transmission and acquisition of HIV (4). For all of these reasons it is critical to provide effective treatments against gonorrhea. Currently, a dual therapy with cephalosporin and either azithromycin or doxycycline is recommended (5). However, over the past several years treatment failures associated with GC strains displaying decreased susceptibility to extended spectrum cephalosporins have been reported from various parts of the world (69). This is especially concerning because no other antibiotics are clinically useful in these cases, and because no appropriate vaccine exists (10). The escalating problem of the spread of antimicrobial resistance in GC, and the importance of the development of new approaches to study, treat, and prevent GC infection, have been recognized by the World Health Organization and by the Centers for Disease Control and Prevention (11, 12).We propose that largely unexplored proteins localized to bacterial cell envelope and naturally released membrane vesicles are particularly promising as potential novel molecular targets for therapeutic interventions against gonorrhea. The small fraction of known components of the GC cell envelope (outer membrane, periplasm, cytoplasmic membrane) plays a fundamental role in establishing infection by enabling the microbes to adhere to and invade host cells, facilitating nutrient acquisition, host tissue destruction, and suppression of immune responses (3, 1315). Further, GC, like many other Gram-negative bacteria, produces membrane vesicles (MVs), which are nano-sized bilayered proteolipids (16). Naturally produced MVs are potentially an effective way to deliver toxins, enzymes, and other effectors to host tissues. Additionally, evidence from various studies support that MVs participate in intercellular communication and horizontal gene transfer (1621). In GC, MVs are necessary for biofilm formation, which is thought to play an important role in asymptomatic infection in women, resistance to antimicrobial agents, and suppression of host immune defenses (2224). MVs may also contribute to the serum resistance by providing an enhanced ability to bind and eliminate bactericidal factors (17).Although the potential importance of proteins localized to the GC cell envelope and MVs has been reported previously (25, 26), only two proteomic studies have been published addressing GC membrane composition (27, 28). Most studies have focused on extensive characterization of factors involved in direct host cell interaction: protruding surface proteins (pili), outer membrane adhesins Opa, porins P.IA and P.IB, lipooligosaccharide, and several iron utilization proteins (3, 4, 15, 2932). Many of these vital virulence factors undergo phase and/or antigenic variation, making them poor drug or vaccine targets. Therefore, the pursuit for novel and constitutively expressed proteins—therapeutic targets in GC—is of utmost importance.Accordingly, in this study we applied global and unbiased proteomics to compare the composition of both the cell envelopes and MVs isolated from four GC strains: FA1090, F62, MS11, and 1291. Specifically, we used isotope tagging for relative and absolute quantification (iTRAQ) coupled with multidimensional liquid chromatography and tandem mass spectrometry (2D-LC/MS/MS). This approach allowed us to determine a uniformly and differentially expressed repertoire of proteins. Focusing on a homolog of LPS transport protein, LptD (OstA, Imp), which was identified in both the cell envelopes and MVs fractions, and ubiquitously expressed among analyzed strains, we showed that its depletion led to loss of GC viability. Finally, we selected for initial characterization six predicted outer membrane proteins, which were present at similar levels in the GC cell envelopes. We generated Δngo1344, Δngo1955, Δngo1985, Δngo2111, Δngo2121, and Δngo2139 mutant strains and examined their sensitivity toward different cell envelope-perturbing agents as well as chloramphenicol. These studies showed that the lack of NGO1985 resulted in dramatically decreased GC viability, suggesting that this protein functions in the maintenance of the cell envelope permeability barrier. Overall, these findings further support our hypothesis that the conserved proteins may represent promising targets for designing new therapeutic interventions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号