首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Transferred Subgroup False Discovery Rate for Rare Post-translational Modifications Detected by Mass Spectrometry
Authors:Yan Fu  Xiaohong Qian
Institution:From the ‡National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; ;¶State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
Abstract:In shotgun proteomics, high-throughput mass spectrometry experiments and the subsequent data analysis produce thousands to millions of hypothetical peptide identifications. The common way to estimate the false discovery rate (FDR) of peptide identifications is the target-decoy database search strategy, which is efficient and accurate for large datasets. However, the legitimacy of the target-decoy strategy for protein-modification-centric studies has rarely been rigorously validated. It is often the case that a global FDR is estimated for all peptide identifications including both modified and unmodified peptides, but that only a subgroup of identifications with a certain type of modification is focused on. As revealed recently, the subgroup FDR of modified peptide identifications can differ dramatically from the global FDR at the same score threshold, and thus the former, when it is of interest, should be separately estimated. However, rare modifications often result in a very small number of modified peptide identifications, which makes the direct separate FDR estimation inaccurate because of the inadequate sample size. This paper presents a method called the transferred FDR for accurately estimating the FDR of an arbitrary number of modified peptide identifications. Through flexible use of the empirical data from a target-decoy database search, a theoretical relationship between the subgroup FDR and the global FDR is made computable. Through this relationship, the subgroup FDR can be predicted from the global FDR, allowing one to avoid an inaccurate direct estimation from a limited amount of data. The effectiveness of the method is demonstrated with both simulated and real mass spectra.Post-translational modifications of proteins often play an essential role in the functions of proteins in cells (1). Abnormal modifications can change the properties of proteins, causing serious diseases (2). Because protein modifications are not directly encoded in the nucleotide sequences of organisms, they must be investigated at the protein level. In recent years, mass spectrometry technology has developed rapidly and has become the standard method for identifying proteins and their modifications in biological and clinical samples (35).In shotgun proteomics experiments, proteins are digested into peptide mixtures that are then analyzed via high-throughput liquid chromatography–tandem mass spectrometry, resulting in thousands to millions of tandem mass spectra. To identify the peptide sequences and the modifications on them, the spectra are commonly searched against a protein sequence database (68). During the database search, according to the variable modification types specified by the user, all forms of modified candidate peptides are enumerated. For each spectrum, candidate peptides (with possible modifications) from the database are scored according to the quality of their match to the input spectrum. However, for many reasons, the top-scored matches are not always correct peptide identifications, and therefore they must be filtered according to their identification scores (9). Finding an appropriate score threshold that gives the desired false discovery rate (FDR)1 is a multiple hypothesis testing problem (1012).At present, the common way to control the FDR of peptide identifications is an empirical approach called the target-decoy search strategy (13). In this strategy, in addition to the target protein sequences, the mass spectra are also searched against the same number of decoy protein sequences (e.g. reverse sequences of the target proteins). Because an incorrect identification has an equal chance of being a match to the target sequences or to the decoy sequences, the number of decoy matches above a score threshold can be used as an estimate of the number of random target matches, and the FDR (of the target matches) can be simply estimated as the number of decoy matches divided by the number of target matches. The target-decoy method, although simple and effective, is applicable to large datasets only. When the number of matches being evaluated is very small, this method becomes inaccurate because of the inadequate sample size (13, 14). Fortunately, for high-throughput proteomic mass spectrometry experiments, the number of mass spectra is always sufficiently large. Current efforts are mostly devoted to increasing the sensitivity of peptide identification at a given FDR by using various techniques such as machine learning (15).When the purpose of an experiment is to search for protein modifications, the problem of FDR estimation becomes somewhat complex. In fact, the legality of the target-decoy method for modification-centric studies was not rigorously discussed until very recently (16). At present, for multiple reasons, the identifications of modified and unmodified peptides are usually combined in the search result, and a global FDR is estimated for them in combination, with only a subgroup of identifications with specific modifications being focused on. However, the FDR of modified peptides can be significantly or even extremely different from that of unmodified peptides at the same score threshold. There are three reasons for this fact. First, because the spectra of modified peptides can have their own features (e.g. insufficient fragmentation or neutral losses), they can have different score distributions from those of unmodified peptides. Second, because the proportions of modified and unmodified peptides in the protein sample are different, the prior probabilities of obtaining a correct identification are different for modified and unmodified peptides. Third, because the proportions of modified and unmodified candidate peptides in the search space are different, the prior probabilities of obtaining an incorrect identification are also different for modified and unmodified peptides. Therefore, the modified peptide identifications of interest should be extracted from the identification result and subjected to a separate FDR estimation, as pointed out recently (1618).The difficulty of separate FDR estimations is highlighted when there are too few modified peptide identifications to allow an accurate estimation. Many protein modifications are present in low abundance in cells but play important biological functions. These rare modifications have very low chances of being detected by mass spectrometry. A crucial question is, if very few modifications are identified from a very large dataset of mass spectra, can they be regarded as correct identifications? There was no answer to this question in the past in terms of FDR control. The target-decoy strategy loses its efficacy in such cases. For example, imagine that we have 10 modified peptide identifications above a score threshold after a search and that all of them are matches to target protein sequences. Can we say that the FDR of these identifications is zero (0/10)? If we decrease the score threshold slightly in such a way that one more modified peptide identification is included but find that that peptide is unfortunately a match to the decoy sequence, then can we say that the FDR of the top 10 target identifications is 10% (1/10)? It is clear here that the inclusion or exclusion of the 11th decoy identification has a great influence on the FDR estimated via the common target-decoy strategy. In fact, according to a binomial model (14), the probability that there are one or more false identifications among the top 10 target matches is as high as 0.5, which means that the real proportion of false discoveries has a half-chance of being no less than 10% (1/10). The appropriate way to estimate the FDR of the 10 target identifications is to give an appropriate estimate of the expected number of false identifications among them, and, most important, this estimate must not be an integer (e.g. 0 or 1) but can be a real number between 0 and 1. Note that single-spectrum significance measures (e.g. p values) are not appropriate for multiple hypothesis testing, not to mention that they can hardly be accurately computed in mass spectrometry.Separate FDR estimation for grouped multiple hypothesis testing is not new in statistics and bioinformatics. A typical example is the microarray data of mRNAs from different locations in an organism or from genes that are involved in different biological processes (19, 20). Efron (21) recently proposed a method for robust separate FDR estimation for small subgroups in the empirical Bayes framework. The underlying principle of this method is that if we can find the quantitative relationship between the subgroup FDR and the global FDR, the former can be indirectly inferred from the latter instead of being estimated from a limited amount of data. The relationship given by Efron is quite general and makes no use of domain-specific information. Furthermore, it requires known conditional probabilities of null and non-null cases given the score threshold. These probabilities are, however, unavailable in the modified peptide identification problem.This paper presents a dedicated method for accurate FDR estimation for rare protein modifications detected from large-scale mass spectral data. This method is based on a theoretical relationship between the subgroup FDR of modified peptide identifications and the global FDR of all peptide identifications. To make the relationship computable, the component factors in it are replaced by or fitted from the empirical data of the target-decoy database search results. Most important, the probability that an incorrect identification is an assignment of a modified peptide is approximated by a linear function of the score threshold. By extrapolation, this probability can be reliably obtained for high-tail scores that are suitable as thresholds. The proposed method was validated on both simulated and real mass spectra. To the best of our knowledge, this study is the first effort toward reliable FDR control of rare protein modifications identified from mass spectra. (Note that the error rate control for modification site location is another complex problem (22, 23) and is not the aim of this paper.)
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号