首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ultrastructure of the compound eye and first optic neuropile of the photoreceptor mutant ora JK84 of Drosophila
Authors:Dr William S Stark  Stanley D Carlson
Institution:(1) Division of Biological Sciences, Lefevre Hall, University of Missouri, Columbia, MO, USA;(2) Department of Entomology, University of Wisconsin, Madison, WI, USA;(3) Division of Biological Sciences, Lefevre Hall, University of Missouri, 65211 Columbia, MO, USA
Abstract:Summary The developmental mutant of Drosophila (ora JK84) is characterized by nonfunctional photoreceptor cells (R1–6), while the R7/R8 cells are normal. A fundamental question is: Does the near absence of photosensitive membranes inhibit development of the Rl-6 axons and their synapses at the other end of the cell? The retina and first optic neuropile (lamina ganglionaris) were examined with freeze-fracture technique and high voltage electron microscopy. R1–6 have reduced rhabdomere caps; rhabdomeric microvilli have about 50% of the normal diameter and 20% of the normal length. Affected cells exhibit prominent vacuoles which appear to communicate with some highly convoluted microvillar membranes. Almost no P-face particles (putative rhodopsin molecules) are present in the R1–6 rhabdomeres, and particle densities are lower in R7 than previously reported. Near the rhabdomere caps, microvilli of R1–6 are fairly normal, but at more proximal levels they are greatly diminished in length and changed in orientation, while at still more proximal levels they are lost. R1–6, R7, and R8 axons from each ommatidium are bundled into normal pseudocartridges beneath the basement membrane. No abnormalities are found in the lamina ganglionaris, and all synaptic associations as well as the presumed ldquovirginrdquo synapses (of R1–6) appear normal. No glial anomalies are present, and R7/R8 axons project through the lamina in the usual fashion. These fine structural findings are correlated with known electrophysiological, biochemical, and behavioral correlates of both sets of photoreceptors (R1–6, and R7/R8).This study was supported substantially by the UW-HVEM Laboratory, in addition to a Faculty Development Award, a UMC Biomedical Research Support Grant N.I.H. RR07053 to W.S.S., and a Hatch Grant, Project 2100 to S.D.C. Freeze fracture was done at the Wisconsin Regional Primate Research Center, N.I.H. Grant RR00167. We thank Professor Hans Ris, Dr. J. Pawley, Dr. D. Neuberger, and Ms. M. Bushlow, HVEM Laboratory, Dept. of Zoology, UW. We also thank Mrs. K. Srivastava, Mr. M.B. Garment, Mr. G. Gaard, and Mr. D. Liu for technical assistance.
Keywords:Freeze fracture  HVEM  Retina  Optic neuropile  Drosophila
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号