首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of Calcium on Electrical Energy Transfer by Microtubules
Authors:Avner Priel  Arnolt J Ramos  Jack A Tuszynski  Horacio F Cantiello
Institution:(1) Department of Physics, University of Alberta Edmonton, Edmonton, Alberta, T6G 2J1, Canada;(2) Nephrology Division and Electrophysiology Core, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA;(3) Harvard Medical School, Boston, MA 02129, USA
Abstract:Microtubules (MTs) are important cytoskeletal superstructures implicated in neuronal morphology and function, which are involved in vesicle trafficking, neurite formation and differentiation and other morphological changes. The structural and functional properties of MTs depend on their high intrinsic charge density and functional regulation by the MT depolymerising properties of changes in Ca2 +  concentration. Recently, we reported on remarkable properties of isolated MTs, which behave as biomolecular transistors capable of amplifying electrical signals (Priel et al., Biophys J 90:4639–4643, 2006). Here, we demonstrate that MT-bathing (cytoplasmic) Ca2 +  concentrations modulate the electrodynamic properties of MTs. Electrical amplification by MTs was exponentially dependent on the Ca2 +  concentration between 10 − 7 and 10 − 2 M. However, the electrical connectivity (coupling) of MTs was optimal at a narrower window of Ca2 +  concentrations. We observed that while raising bathing Ca2 +  concentration increased electrical amplification by MTs, energy transfer was highest in the presence of ethylene glycol tetraacetic acid (lowest Ca2 +  concentration). Our data indicate that Ca2 +  is an important modulator of electrical amplification by MTs, supporting the hypothesis that this divalent cation, which adsorbs onto the polymer’s surface, plays an important role as a regulator of the electrical properties of MTs. The Ca2 + -dependent ability of MTs to modulate and amplify electrical signals may provide a novel means of cell signaling, likely contributing to neuronal function.
Keywords:Cytoskeleton  Biomolecular transistors  Electrical connectivity  Microtubule dynamics  Electrical amplification
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号