首页 | 本学科首页   官方微博 | 高级检索  
     


The origin and evolution of peptide YY (PYY) and pancreatic polypeptide (PP)
Authors:Conlon J Michael
Affiliation:Regulatory Peptide Center, Department of Biomedical Sciences, Creighton University Medical School, Omaha, NE 68178-0405, USA. jmconlon@creighton.edu
Abstract:It is generally accepted that the neuropeptide Y (NPY) family of homologous peptides arose as a result of a series of gene duplication events. Recent advances in comparative genomics allow to formulate a hypothesis that explains, at least in part, the complexity of the family. Chromosome mapping studies reveal that the gene encoding PYY may have arisen from a common ancestral gene (termed NYY) in an ancient chromosomal duplication event that also involved the hox gene clusters. A tandem duplication of the PYY gene concomitant with or just before the emergence of tetrapods generated the PPY gene encoding PP. In the primate and ungulate lineages, the PYY-PPY gene cluster has undergone a more recent gene duplication event to create a PYY2-PPY2 gene cluster on the same chromosome. In the human and baboon, this cluster probably does not encode functional NPY family peptides but expression of the bovine PYY2 gene generates seminalplasmin, a major biologically active component of bull semen. An independent duplication of the PYY gene in the lineage of teleost fish has generated peptides of the PY family that are synthesized in the pancreatic islets of Acanthomorpha. The structural organization of the biosynthetic precursors of PYY and PP (preproPYY and preproPP) has been quite well preserved during the evolution of vertebrates but conservative pressure on individual domains in the proteins has not been uniform. The duplication of the PYY gene that generated the PPY gene appears to have resulted in a relaxation of conservative pressure on the functional domain with the result that the amino acid sequences of tetrapod PYYs are more variable than the PYYs of jawed fish. Although the primary structure of PP has been quite strongly conserved in mammals, with the exception of the rodents, the extreme variability in the sequences of amphibian and reptilian PPs means that the peptide is a useful molecular marker to study the branching order in early tetrapod evolution
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号