首页 | 本学科首页   官方微博 | 高级检索  
     


Robust detection of periodic time series measured from biological systems
Authors:Miika?Ahdesm?ki,Harri?L?hdesm?ki  author-information"  >  author-information__contact u-icon-before"  >  mailto:harri.lahdesmaki@tut.fi"   title="  harri.lahdesmaki@tut.fi"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Ron?Pearson,Heikki?Huttunen,Olli?Yli-Harja
Affiliation:(1) Institute of Signal Processing, Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland;(2) ProSanos Corporation, Harrisburg, PA 17101, USA
Abstract:

Background  

Periodic phenomena are widespread in biology. The problem of finding periodicity in biological time series can be viewed as a multiple hypothesis testing of the spectral content of a given time series. The exact noise characteristics are unknown in many bioinformatics applications. Furthermore, the observed time series can exhibit other non-idealities, such as outliers, short length and distortion from the original wave form. Hence, the computational methods should preferably be robust against such anomalies in the data.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号