首页 | 本学科首页   官方微博 | 高级检索  
     


A novel method reveals that solvent water favors polyproline II over beta-strand conformation in peptides and unfolded proteins: conditional hydrophobic accessible surface area (CHASA)
Authors:Fleming Patrick J  Fitzkee Nicholas C  Mezei Mihaly  Srinivasan Rajgopal  Rose George D
Affiliation:Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
Abstract:In aqueous solution, the ensemble of conformations sampled by peptides and unfolded proteins is largely determined by their interaction with water. It has been a long-standing goal to capture these solute-water energetics accurately and efficiently in calculations. Historically, accessible surface area (ASA) has been used to estimate these energies, but this method breaks down when applied to amphipathic peptides and proteins. Here we introduce a novel method in which hydrophobic ASA is determined after first positioning water oxygens in hydrogen-bonded orientations proximate to all accessible peptide/protein backbone N and O atoms. This conditional hydrophobic accessible surface area is termed CHASA. The CHASA method was validated by predicting the polyproline-II (P(II)) and beta-strand conformational preferences of non-proline residues in the coil library (i.e., non-alpha-helix, non-beta-strand, non-beta-turn library derived from X-ray elucidated structures). Further, the method successfully rationalizes the previously unexplained solvation energies in polyalanyl peptides and compares favorably with published experimentally determined P(II) residue propensities. We dedicate this paper to Frederic M. Richards.
Keywords:Solvation energy   conditional hydrophobic accessible surface area   CHASA   polyproline-II   coil library   probability density map
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号