首页 | 本学科首页   官方微博 | 高级检索  
     


Near Isometric Biomass Partitioning in Forest Ecosystems of China
Authors:Dafeng Hui  Jun Wang  Weijun Shen  Xuan Le  Philip Ganter  Hai Ren
Affiliation:1. Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, United States of America.; 2. Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.; Beijing Forestry University, China,
Abstract:Based on the isometric hypothesis, belowground plant biomass (MB) should scale isometrically with aboveground biomass (MA) and the scaling exponent should not vary with environmental factors. We tested this hypothesis using a large forest biomass database collected in China. Allometric scaling functions relating MB and MA were developed for the entire database and for different groups based on tree age, diameter at breast height, height, latitude, longitude or elevation. To investigate whether the scaling exponent is independent of these biotic and abiotic factors, we analyzed the relationship between the scaling exponent and these factors. Overall MB was significantly related to MA with a scaling exponent of 0.964. The scaling exponent of the allometric function did not vary with tree age, density, latitude, or longitude, but varied with diameter at breast height, height, and elevation. The mean of the scaling exponent over all groups was 0.986. Among 57 scaling relationships developed, 26 of the scaling exponents were not significantly different from 1. Our results generally support the isometric hypothesis. MB scaled near isometrically with MA and the scaling exponent did not vary with tree age, density, latitude, or longitude, but increased with tree size and elevation. While fitting a single allometric scaling relationship may be adequate, the estimation of MB from MA could be improved with size-specific scaling relationships.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号