首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinetics of sickle hemoglobin polymerization. I. Studies using temperature-jump and laser photolysis techniques
Authors:F A Ferrone  J Hofrichter  W A Eaton
Institution:Department of Physics and Atmospheric Science Drexel University, Philadelphia, PA 19104, U.S.A.;Laboratory of Chemical Physics National Institute of Arthritis, Diabetes, Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20205, U.S.A.
Abstract:Using a combination of laser photolysis and temperature-jump techniques, the kinetics of hemoglobin S polymerization have been studied over a wide range of delay times (10(-3) to 10(5)s), concentrations (0.2 to 0.4 g/cm3) and temperatures (5 to 50 degrees C). A slow temperature-jump technique was used to induce polymerization in samples with delay times between 10(2) seconds and 10(5) seconds by heating a solution of completely deoxygenated hemoglobin S. For samples with shorter delay times, polymerization was induced by photodissociating the carbon monoxide complex in small volumes (10(-9) cm3) using a microspectrophotometer equipped with a cw argon ion laser. The photolysis technique is described in some detail because of its importance in studying hemoglobin S polymerization at physiological concentrations and temperatures. In order, to establish conditions for complete photodissociation with minimal laser heating, a series of control experiments on normal human hemoglobin was performed and theoretically modeled. The concentration dependence of the tenth time is found to decrease with increasing hemoglobin S concentration. In the range 0.2 to 0.3 g/cm3, the tenth time varies as the 36th power of the hemoglobin S concentration, while in the range 0.3 to 0.4 g/cm3 it decreases to 16th power. As the tenth times become shorter, the progress curves broaden, with the onset of polymerization becoming less abrupt. For tenth times greater than about 30 seconds, measurements with the laser photolysis technique on small volumes yield highly irreproducible tenth times, but superimposable progress curves, indicating stochastic behavior. The initial part of the progress curves from both temperature-jump and laser photolysis experiments is well fit with an equation for the concentration of polymerized monomer, delta (t) = Acosh (Bt) -1], which results from integration of the linearized rate equations for the double nucleation mechanism described in the accompanying paper (Ferrone et al., 1985). The dependence of the parameters A and B on temperature and concentration is obtained from fitting over 300 progress curves. The rate B has a large concentration dependence, varying at 25 degrees C from about 10(-4) S-1 at 0.2 g/cm3 to about 100 s-1 at 0.4 g/cm3.
Keywords:Hb  hemoglobin  HbCO  carbonmonoxyhemoglobin  oxyhemoglobin
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号