首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hybridization increases mitochondrial production of reactive oxygen species in sunfish
Authors:Sherry N N Du  Fariborz Khajali  Neal J Dawson  Graham R Scott
Institution:1. Department of Biology, McMaster University, Hamilton, ON, Canada;2. Department of Animal Science, Shahrekord University, Shahrekord, Iran;3. Department of Biology, University of Miami, Coral Gables, Florida
Abstract:Mitochondrial dysfunction and oxidative stress have been suggested to be possible mechanisms underlying hybrid breakdown, as a result of mito‐nuclear incompatibilities in respiratory complexes of the electron transport system. However, it remains unclear whether hybridization increases the production of reactive oxygen species (ROS) by mitochondria. We used high‐resolution respirometry and fluorometry on isolated liver mitochondria to examine mitochondrial physiology and ROS emission in naturally occurring hybrids of pumpkinseed (Lepomis gibbosus) and bluegill (L. macrochirus). ROS emission was greater in hybrids than in both parent species when respiration was supported by complex I (but not complex II) substrates, and was associated with increases in lipid peroxidation. However, respiratory capacities for oxidative phosphorylation, phosphorylation efficiency, and O2 kinetics in hybrids were intermediate between those in parental species. Flux control ratios of capacities for electron transport (measured in uncoupled mitochondria) relative to oxidative phosphorylation suggested that the limiting influence of the phosphorylation system is reduced in hybrids. This likely helped offset impairments in electron transport capacity and complex III activity, but contributed to augmenting ROS production. Therefore, hybridization can increase mitochondrial ROS production, in support of previous suggestions that mitochondrial dysfunction can induce oxidative stress and thus contribute to hybrid breakdown.
Keywords:Energy metabolism  post‐zygotic isolation  oxidative stress  speciation  temperature  thermal sensitivity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号