Abstract: | The method of proton magnetic resonance was used to obtain information on the active site of the guanyl-specific ribonuclease from Penicillium chrysogenum, strain 152A. Four pH-dependent signals in the aromatic region of the proton NMR spectrum of the enzyme were assigned to the C-2 and C-4 protons of the two histidine residues. To determine the pK values and the environment of the histidine residues the pH dependence of their chemical shifts was studied and experimental curves thus obtained were analyzed taking into account the effect of other dissociating groups of the enzyme. The pK values of the histidine residues were found to be equal to 7.92 +/- 0.04 and 7.86 +/- 0.09. The results of the calculations indicate that each histidine residue should interact with an acidic group (carboxylic) of the protein (pK 4.33 and 3.48) and the distance between two histidine residues does not exceed 0.85 nm. The rate constants for the quasi-first order reaction of deuterium exchange of the histidine residues (11.2 s-1 and 3.7 x-1) suggest that both residues are accessible, though to a different degree to solvent. Formation of a complex between the enzyme and guanosine 3'-phosphate (Guo3'P) is accompanied by the shift of the histidine pK toward the alkaline region by 0.5. The existence of the complex is controlled by dissociation of a histidine residue with pK 8.7 in alkaline medium and by protonation of the N-7 of Guo3'P (pK 2.4) in acid medium. Nuclear Overhauser effect measurements were used to determine the glycosidic torsion angle for the Guo3'P in the complex and to estimate the distances between the histidine residues of the enzyme and ribose ring of Guo-3'P. The results obtained suggest that the nucleotide in the complex has an anti conformation and the least exposed histidine is spaced not more than 0.5 nm from the C-1' proton of the nucleotide ribose ring. A model for the enzyme-nucleotide complex is presented. |