首页 | 本学科首页   官方微博 | 高级检索  
     


Long-distance movement and differential targeting of microRNA399s
Authors:Shu-I Lin  Tzyy-Jen Chiou
Affiliation:Graduate Institute of Life Sciences; National Defense Medical Center; and Agricultural Biotechnology Research Center; Academia Sinica; Taipei, Taiwan, Republic of China
Abstract:We have previously demonstrated that miR399s control phosphate (Pi) homeostasis by regulating the expression of a ubiquitin-conjugating E2 enzyme (UBC24/PHO2) in Arabidopsis. Changes in miR399-dependent PHO2 gene expression modulate Pi uptake, allocation and remobilization. More recently, we provided evidence that miR399s are able to move in the phloem stream and across grafting junctions from the scions overexpressing miR399 to the wild-type rootstocks. Movement of miR399s serves as a long-distance signal to report and balance the Pi status between shoots and roots. Of note, results from grafting experiments indicate that miR399b is less efficient in cleaving the PHO2 mRNA than is miR399f, despite the similar mobility of the two miR399s. We propose that nucleotide 13 of miR399s, which gives rise to the sequence variation among different miR399 species, could be involved in regulating the abundance of PHO2 mRNA through sequence complementarity to the target sequences of PHO2 mRNA and mimicking target sequence of At4/IPS1 noncoding RNAs.Key words: phosphate, microRNA399, PHO2, UBC24, long-distance movement, At4/IPS1
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号