首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Synthesis of dicytidylyl-(3'-5')-1,2-di(adenosin-N6-yl)ethane and dicytidylyl-(3'-5')-1,4-di(adenosin-N6-yl)butane: covalently joined terminals of two transfer ribonucleic acids and their behavior toward snake venom phosphodiesterase
Authors:J Zemlicka
Abstract:The chemical synthesis of the tital bridged trinucleoside diphosphates 3e and 3f along with the corresponding dinucleoside phosphates 3c and 3d is described. Bridged nucleosides 3a and 3b gave on treatment with triethyl orthoformate in the presence of p-toluenesulfonic acid in dimethylformamide the cyclic orthoesters 2a and 2b. Condensation of 2a and 2b with N,2',5'-O-triacetylcytidine 3'-phosphate (1) using dicyclohexylcarbodiimide in pyridine afforded after deblocking and chromatographic separation products 3c-f. The latter were readily degraded with pancreatic RNase, but 3c and 3e were completely resistant toward snake venom phosphodiesterase whereas 3d and 3f were digested to the extent of 65 and 43%, respectively. The major product of degradation of 3f with phosphodiesterase was compound 3d resulting from the combined action of phosphodiesterase and contaminating phosphomonoesterase. The results are explained in terms of stacking of terminal bridge nucleoside units in 3c-f. The implications of these findings for the function of snake venom phosphodiesterase are discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号