首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Coronary endothelial dysfunction is not rapidly reversible with ascorbic acid
Authors:Widlansky Michael E  Biegelsen Elizabeth S  Hamburg Naomi M  Duffy Stephen J  Keaney John F  Vita Joseph A
Institution:Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.
Abstract:In humans with cardiovascular risk factors, increased vascular production of superoxide anion may contribute to endothelial dysfunction by its reacting with nitric oxide and reducing its biological activity. High concentrations of ascorbic acid scavenge superoxide anion and restore normal endothelium-dependent vasodilation in humans with cardiovascular risk factors. To investigate the contribution of increased superoxide anion to endothelial dysfunction in atherosclerotic coronary arteries, we examined the effect of sequential infusions of ascorbic acid (final concentration 0.1, 1.0, and 10 mmol/L) or placebo on coronary endothelial function in 26 subjects referred for cardiac catheterization to evaluate coronary artery disease. Coronary vasomotor function was evaluated using intracoronary agonist infusion, quantitative angiography, and intracoronary Doppler measurements. At baseline, endothelium-dependent vasodilation of epicardial arteries and coronary microvessels was impaired to an equivalent extent in the ascorbic acid and placebo groups. Sequential ascorbic acid infusions had no effect on the acetylcholine-induced change in coronary artery diameter (-11+/-8, -12+/-10, and -9+/-9%) compared with the effect of placebo (-14+/-13, -16+/-10, and -13+/-9%) infusions (p=0.98). Similarly, the changes in coronary blood flow during acetylcholine infusions were equivalent during ascorbic acid (51+/-44, 67+/-66, and 62+/-52%) and placebo (61+/-104, 55+/-93, and 50+/-69%) infusions (p=0.63). Ascorbic acid also had no effect on the dilator response to intracoronary nitroglycerin (p=0.19). These data argue against an important role for superoxide-mediated "inactivation" of nitric oxide or another rapidly reversible form of oxidative stress as a mechanism of coronary endothelial dysfunction in patients with coronary atherosclerosis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号