首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action
Authors:David I Chan
Institution:Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
Abstract:Antimicrobial peptides encompass a number of different classes, including those that are rich in a particular amino acid. An important subset are peptides rich in Arg and Trp residues, such as indolicidin and tritrpticin, that have broad and potent antimicrobial activity. The importance of these two amino acids for antimicrobial activity was highlighted through the screening of a complete combinatorial library of hexapeptides. These residues possess some crucial chemical properties that make them suitable components of antimicrobial peptides. Trp has a distinct preference for the interfacial region of lipid bilayers, while Arg residues endow the peptides with cationic charges and hydrogen bonding properties necessary for interaction with the abundant anionic components of bacterial membranes. In combination, these two residues are capable of participating in cation-π interactions, thereby facilitating enhanced peptide-membrane interactions. Trp sidechains are also implicated in peptide and protein folding in aqueous solution, where they contribute by maintaining native and nonnative hydrophobic contacts. This has been observed for the antimicrobial peptide from human lactoferrin, possibly restraining the peptide structure in a suitable conformation to interact with the bacterial membrane. These unique properties make the Arg- and Trp-rich antimicrobial peptides highly active even at very short peptide lengths. Moreover, they lead to structures for membrane-mimetic bound peptides that go far beyond regular α-helices and β-sheet structures. In this review, the structures of a number of different Trp- and Arg-rich antimicrobial peptides are examined and some of the major mechanistic studies are presented.
Keywords:BLM  black lipid membranes  CD  circular dichroism  cLZ  human c-type lysozyme  combi-1 (or-2)  combinatorial peptide-1 (or-2)  CPP  cell-permeable peptide  DiPoPE  dipalmitoleoyl PE  DOPC (or DOPE or DOPG)  1  2-dioleoyl-sn-glycero-3-PC (or PE  PG)  DPC  dodecylphosphocholine  DPPC (or DPPE or DPPG)  1  2-dipalmitoyl-sn-glycero-3-PC (or PE or PG)  DSC  differential scanning calorimetry  HEWL  hen egg white lysozyme  hLZ  human lysozyme  IC50  inhibitory concentration at which 50% inhibition is achieved  ITC  isothermal titration calorimetry  Lfcin  lactoferricin  LfcinB  bovine Lfcin  LPS  lipopolysaccharide  LUV  large unilamellar vesicle  LysC  HEWL peptide  residues 98-112 in HEWL  LysH  residues 107-113 in hLZ  MD  molecular dynamics  MIC  minimal inhibitory concentration  MIP-3α  macrophage inflammatory protein-3α  MRSA  methicillin resistant Staphylococcus aureus  NMR  nuclear magnetic resonance  NOE  nuclear Overhauser effect  PC  phosphatidylcholine  PE  phosphatidylethanolamine  PG  phosphatidylglycerol  PDB  Protein Data Bank  PIN-a (or-b)  puroindoline A (or B)  puroA (or B)  puroindoline A (or B) peptide  SDS  sodium dodecyl sulfate  SMH  Shai-Matsuzaki-Huang  VRE  vancomycin resistant enterococci
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号