首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Epoxyeicosatrienoic acids activate transglutaminases in situ and induce cornification of epidermal keratinocytes
Authors:Ladd Patricia A  Du Liping  Capdevila Jorge H  Mernaugh Raymond  Keeney Diane S
Institution:Department of Medicine, Division of Dermatology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
Abstract:The cytochrome P450 CYP2B19 is a keratinocyte-specific arachidonic acid epoxygenase expressed in the granular cell layer of mouse epidermis. In cultured keratinocytes, CYP2B19 mRNAs are up-regulated coordinately with those of profilaggrin, another granular cell-specific marker. We investigated effects of the CYP2B19 metabolites 11,12- and 14,15-epoxyeicosatrienoic acids (EETs) on keratinocyte transglutaminase activities and cornified cell envelope formation. Keratinocytes were differentiated in vitro in the presence of biotinylated cadaverine. Transglutaminases cross-linked this substrate into endogenous proteins in situ; an enzyme-linked immunosorbent assay was used to quantify the biotinylated proteins. Exogenously added or endogenously formed 14,15-EET increased transglutaminase cross-linking activities in cultured human and mouse epidermal keratinocytes in a modified in situ assay. Transglutaminase activities increased approximately 8-fold (p < or = 0.02 versus mock control) in human keratinocytes transduced with adenovirus particles expressing a 14S,15R-EET epoxygenase (P450 BM3v). The physiological transglutaminase substrate involucrin was preferentially biotinylated in situ, determined by immunoblotting and mass spectrometry. P450 BM3v-induced transglutaminase activation was associated with increased 14,15-EET formation (p = 0.002) and spontaneous cell cornification (p < or = 0.001). Preferential involucrin biotinylation and the increased cornified cell envelope formation provided evidence that transglutaminases mediated the P450 BM3v-induced cross-linking activities. These results support a physiological role for 14,15-EET epoxygenases in regulating epidermal cornification, and they have important implications for epidermal barrier functions in vivo.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号