首页 | 本学科首页   官方微博 | 高级检索  
     


Simulation of ethylene conversion initiated by a streamer corona in an air flow
Authors:E. A. Filimonova  R. Kh. Amirov
Affiliation:(1) Associated Institute of High Temperatures, Russian Academy of Sciences, Izhorskaya ul. 13/19, Moscow, 127412, Russia
Abstract:The conversion of ethylene (C2H4) at concentrations of 400 and 930 ppm in an air flow at a temperature of 295 K is simulated. Ethylene is added to air either upstream of the discharge chamber or in the reaction tube, downstream of a pulsed corona discharge. It is taken into account that the distribution of the gas components in the discharge zone is nonuniform due to the streamer nature of the discharge. In the reaction tube, all of the components are assumed to be uniform. Simulation results agree with the experiments carried out at voltage pulse amplitudes of 30 and 40 kV, a gas flow rate of 2–10 l/min, and a specific energy deposition of up to 0.15 J/cm3. It is shown that the ozone produced plays a governing role in the C2H4 conversion. It is found that it is possible to minimize the energy spent on conversion by choosing the optimum pulse repetition rate and the specific energy deposited per pulse. The presence of water vapor impedes the ethylene conversion and increases the concentration of formaldehyde and methane.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号