首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Lateral membrane biogenesis in human bronchial epithelial cells requires 190-kDa ankyrin-G
Authors:Kizhatil Krishnakumar  Bennett Vann
Institution:Howard Hughes Medical Institute and Departments of Cell Biology, Biochemistry, and Neuroscience, Duke University Medical Center, Durham, North Carolina 27710, USA. k.kizhatil@cellbio.duke.edu
Abstract:Ankyrin-G polypeptides are required for restriction of voltage-gated sodium channels, L1 cell adhesion molecules, and beta IV spectrin to axon initial segments and are believed to couple the Na/K-ATPase to the spectrin-actin network at the lateral membrane in epithelial cells. We report here that depletion of 190-kDa ankyrin-G in human bronchial epithelial cells by small interfering RNA results in nearly complete loss of lateral plasma membrane in interphase cells, and also blocks de novo lateral membrane biogenesis following mitosis. Loss of the lateral membrane domain is accompanied by an expansion of apical and basal plasma membranes and preservation of apical-basal polarity. Expression of rat 190-kDa ankyrin-G, which is resistant to human small interfering RNA, prevents loss of the lateral membrane following depletion of human 190-kDa ankyrin-G. Human 220-kDa ankyrin-B, a closely related ankyrin isoform, is incapable of preserving the lateral membrane following 190-kDa ankyrin-G depletion. Moreover, analysis of rat 190-kDa ankyrin G/ankyrin B chimeras shows that all three domains of 190-kDa ankyrin-G are required for preservation of the lateral membrane. These results demonstrate that 190-kDa ankyrin-G plays a pleiotropic role in assembly of lateral membranes of bronchial epithelial cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号