首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ion channels are likely to be involved in the two steps of phage T5 DNA penetration into Escherichia coli cells.
Authors:P Boulanger  L Letellier
Institution:Laboratoire des Biomembranes, UA 1116 CNRS Université Paris Sud, Orsay, France.
Abstract:Phage T5 injects its DNA into Escherichia coli cells in two steps; 8% of the chromosome is first injected, and then there is a pause during which proteins encoded by this DNA fragment are synthesized allowing the remaining DNA to be injected. Using a potassium-selective electrode, we show that the injection of the two DNA fragments is associated with an efflux in two steps, of cytoplasmic potassium. The rate of efflux is linearly related to the number of added phages suggesting that each phage induces the formation of at least one channel in the inner membrane. The first efflux occurs even in depolarized cells suggesting that the insertion and the opening of the channel can take place in the absence of the electrochemical gradient of protons (delta mu H+). The channel is in a closed configuration during the time required for the synthesis of the phage-encoded proteins; this closing and the second efflux are prevented by the depolarization of the cell. The insertion of the channel in the inner membrane requires a fluid membrane. The results obtained suggest that the function of this channel is to translocate phage T5 DNA.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号