首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Met-enkephalin receptor-mediated increase of membrane fluidity modulates nitric oxide (NO) and cGMP production in rat brain synaptosomes
Authors:George Deliconstantinos  Vassiliki Villiotou  John C Stavrides
Institution:(1) Department of Experimental Physiology, University of Athens Medical School, GR-115 27 Athens, Greece
Abstract:The association of 3H]-Met-enkephalin with synaptosomes isolated from rat brain cortex, when incubated for 30 min at 25°C follows a sigmoid path with a Hill coefficient h=1.25±0.04. Binding of Met-enkephalin into synaptosomes was saturable, with an apparent binding constant of 8.33±0.48 nM. At saturation, Met-enkephalin specific receptors corresponded to 65.5±7.2 nmol/mg synaptosomal protein. The Hill plot in combination with the biphasic nature of the curve to obtain the equilibrium constant, showed a moderate degree of positive cooperativity in the binding of Met-enkephalin into synaptosomes of at least one class of high affinity specific receptors. Met-enkephalin increased the lipid fluidity of synaptosomal membranes labelled with 1,6-diphenyl-1,3,5-hexatriene (DPH), as indicated by the steady-state fluorescence anisotropy (ro/r)–1]–1. Arthenius-type plots of (ro/r)–1]–1 indicated that the lipid separation of the synaptosomal membranes at 23.4±1.2°C was perturbed by Met-enkephalin such that the temperature was reduced to 15.8±0.8°C. Naloxone reversed the fluidizing effect of Met-enkephalin, consistent with the receptor-mediated modulation of membrane fluidity. Naloxone alone had no effect on membrane fluidity. NO release and cGMP production by NO-synthase (NOS) and soluble guanylate cyclase (sGC), both located in the soluble fraction of synaptosomes (synaptosol) were decreased by 82% and 80% respectively, after treatment of synaptosomes with Met-enkephalin (10–10–10–4 M). These effects were reversed by naloxone (10–4 M) which alone was ineffective in changing NO and cGMP production. We propose that Met-enkephalin achieved these effects through receptor mediated perturbations of membrane lipid structure and that inhibition of the L-Arg/NO/cGMP pathway in the brain may result in the antinociceptive effects of Met-enkephalin.
Keywords:Nitric oxide (NO)  NO-synthase (NOS)  soluble guanylate cyclase (sGC)  Met-enkephalin  membrane fluidity  synaptosomes  antinociception
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号