首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pseudomonas Exotoxin A-Mediated Apoptosis Is Bak Dependent and Preceded by the Degradation of Mcl-1
Authors:Xing Du  Richard J Youle  David J FitzGerald  Ira Pastan
Institution:Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,1. Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 208922.
Abstract:Pseudomonas exotoxin A (PE) is a bacterial toxin that arrests protein synthesis and induces apoptosis. Here, we utilized mouse embryo fibroblasts (MEFs) deficient in Bak and Bax to determine the roles of these proteins in cell death induced by PE. PE induced a rapid and dose-dependent induction of apoptosis in wild-type (WT) and Bax knockout (Bax−/−) MEFs but failed in Bak knockout (Bak−/−) and Bax/Bak double-knockout (DKO) MEFs. Also a loss of mitochondrial membrane potential was observed in WT and Bax−/− MEFs, but not in Bak−/− or in DKO MEFs, indicating an effect of PE on mitochondrial permeability. PE-mediated inhibition of protein synthesis was identical in all 4 cell lines, indicating that differences in killing were due to steps after the ADP-ribosylation of EF2. Mcl-1, but not Bcl-xL, was rapidly degraded after PE treatment, consistent with a role for Mcl-1 in the PE death pathway. Bak was associated with Mcl-1 and Bcl-xL in MEFs and uncoupled from suppressed complexes after PE treatment. Overexpression of Mcl-1 and Bcl-xL inhibited PE-induced MEF death. Our data suggest that Bak is the preferential mediator of PE-mediated apoptosis and that the rapid degradation of Mcl-1 unleashes Bak to activate apoptosis.Apoptosis is a mode of cell death utilized by multicellular organisms to remove unwanted cells. Also, many different cancer treatments, including chemotherapy and radiotherapy, induce apoptosis and result in the destruction of tumor cells. In some cases, apoptosis resistance can contribute to the failure of chemotherapy (14, 20, 24). Immunotoxins are a class of antitumor agents in which a powerful protein toxin is brought to the cancer cell by an antibody or an antibody fragment (for reviews, see references 28, 29, and 32). Several immunotoxins are currently in clinical trials, and one of these, BL22, targeting CD22, has shown excellent activity in drug-resistant hairy-cell leukemia (18, 19). Also, a fusion protein in which a fragment of diphtheria toxin is fused to the cytokine interleukin 2 (IL-2) (Ontak) is approved for the treatment of cutaneous T-cell lymphoma (26). Several studies carried out to determine how protein toxins and immunotoxins containing these toxins kill target cells have reported caspase activation (13, 16, 17, 30, 33). However, the steps leading up to caspase activation by these toxins that inhibit protein synthesis have not been elucidated.Bcl-2 family members are essential regulators of the mitochondrial (intrinsic) apoptosis pathway (1, 21). Proteins of this family have been divided into pro- and antiapoptotic proteins. Antiapoptotic proteins include the multi-Bcl-2 homology (BH) domain proteins Bcl-2, Bcl-xL, Bcl-w, Mcl-1, Bcl-b, and Bcl2a1. Proapoptotic members can be further classified into two subfamilies, the multi-BH domain Bax homologues, including Bax, Bak, and Bok, and the BH3-only proteins, including Nbk/Bik, Noxa, Hrk, Bad, Bim, Puma, and Bmf. Bax and Bak are the most extensively studied central mediators in the mitochondrial apoptosis pathway (4, 6). Various stimuli, including pathogens, toxic drugs, irradiation, and starvation, induce a conformational change and activation of Bak/Bax, usually via BH3-only proapoptosis proteins. This results in the disruption of mitochondrial membranes and the release of apoptotic factors, such as cytochrome c, SMAC, and apoptosis-inducing factor, which lead to the activation of effector caspases (5, 37, 40, 42, 43).The roles of Bax and Bak can be redundant or nonredundant, depending on the apoptotic stimuli. Bak and Bax can compensate for each other in apoptosis induced by staurosporine, etoposide, UV irradiation, serum deprivation, tBid, Bim, Bad, or Noxa (37, 43). Bak plays an essential role for apoptosis induced by Semliki Forest virus, gliotoxin, Bcl-xS, and vinblastine (22, 27, 34, 35), while Bax is favored for apoptosis induced by Nbk/Nik, a combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and ionizing irradiation, or TRAIL and 5-fluorouracil (5-FU) (9, 10, 36, 38). Silencing of either Bak or Bax resulted in resistance to apoptosis induced by Neisseria gonorrhoeae and cisplatin (15). Sometimes the same stimulus may result in different outcomes in different cell types. NBK/Bik mediated Bax-dependent cell death in one study (9), while in another study, NBK/Bik activated BAK-mediated apoptosis (31).In the current study, we utilized mutant mouse embryo fibroblasts (MEFs) deficient in Bak, Bax, or both proteins and provided evidence for an essential role of Bak in apoptosis induced by Pseudomonas exotoxin A (PE) and other protein synthesis inhibitors. We found that Bak−/− cells are resistant to killing by PE and that Mcl-1, which binds to Bak, controls apoptosis induced by PE.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号